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I Editor's Preface

I Reexploring convection and its various transitions to chaotic behavior were
the central themes of GFD 1981. Our principal lecturer, Dr. Edward A. Spiegel,
provided both a rich historical picture and stimulating hours at the current

frontiers of this topic. Before the summer was out his research lecture on
"A Tale of Two Methods" elegantly merged Pierre Coullet's canonical formalism

for studying dynamical systems in a central manifold and the more traditional

two-timing amplitude expansions near critical points. Other lecture sequences
on convection and its relation to simpler dynamical systems ranged from the

fine presentations of John Guckenheimer on bifurcation theory to Fritz Busse's

j survey of his immense contributions to our understanding of nonlinear
convection. The list of other lectures found on the following pages attests
to our summer-long exposure to convection in the ocean, the atmosphere, the
earth's core and mantle, and in the sun. August brought lectures on new

I observations of convection in the laboratories of physicists. Albert
Libchaber's precise experiments on the many routes convection can take to
turbulence, with parallel laboratory and numerical experiments described by

J. Gollub and E. Siggia, added much to our language of inquiry.

The Fellowship lectures reported at the end of the program represent the

first visible creative results of our summer research efforts. These reports

are to be treated as unpublished manuscripts. Readers desiring to quote from
the material should seek the permission of the author. As in past years, these

reports are often reworked for publication or are incorporated into doctoral

theses.

We are indebted to Horace Hoffman of the Office of Naval Research and to

James Greenberg of the National Science Foundation for finding financial

support for the program. This report would not have been assembled without

the skillfull guidance of Florence Mellor and her assistant Gail P. Jackson.
Special thanks are due Dr. William R. Young and Lynne D. Talley for mathemati-

cal editing. We are also grateful to A. L. Peirson for his thoughtful admin-

istration of our program.

W
Willem V. R. Malkus

I:
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THE HISTORY AND PHYSICS OF BUOYANCY IN FLUIDS

Edward A. Spiegel

The study of convection is a venerable field. Before discussing any
detailed work, let us embark on an historical sketch.

1.1 Historical Sketch

c.250 BC Archimedes discovers the principle of specific gravity and thus
quantifies the idea of buoyancy.

1657 Rinaldi demonstrates convection in experiments designed to
disprove Aristotles's ideas on the flow of heat (Middleton,
1908).

1749 Ben Franklin gives a geophysical application - the motion of air
in a thunderstorm (Middleton, 1968).

1798 Rumford (in trying to discover why soup cools faster than apple
pie)does experiments with convection in which a trace (yellow
resin) is introduced for the first time (Brown, 1979).

1834 Pruitt coined the word "convection" (Brown, 1979).

1840 Rayleigh, Espy and others looked at the instability of an
unstably stratified fluid and derived the "Schwartzchild"
interior.

1861 Lord Kelvin introduced convective equilibrium (Lamb).

1885 Jevons discussed double diffusive convection.

1900 Benard observed hexagonal convection cells upon heating a
thin layer of fluid above the critical Rayleigh number.
Unfortunately, he probably did not realize surface tension
had a very important influence on his results.

1903 Boussinesq's approximate equations for convection in a thin,
almost adiabatic layer were published (1903, in his Theorie
Analytique de la Chaleus").

1916 Lord Rayleigh discussed marginal stability of Boussinesq
convection and introduced the bey stability parameter.

1926 Jeffreys (See Saltzman, 1962) looked at the case of
insulating top and bottom and found that the most unstable
modes were horizontally infinite in extent.

Up to 1940 Better B.C.'s and better calculations of the critical
Rayleigh number and wave length at convective instability
were done culminating in a paper of Pellev and Southwell

(1940) (See Saltzman, 1962). Their results are summarized in
Figure 1.
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1952ff Overstability was found in convection (See Chandrasekhar, 1961.)
These were of two kinds. Rotation could couple modes with
vertical vorticity to horizontal motion and produce over-
stability (later done by nonlinear terms with no rotation by
Busse, Busse and Clever). Computing instabilities like magnetic
and thermal effects could produce overstability in a generic
way. This opened the quantitative study of computing instabili-
ties continued by Townsend (JFM, 1959), Stern (1961), and onward.

"17,cL leI I I

3 1 Figure 1.

1956 Mallus and Veronis found for R slightly greater than Rc, that
steady small amplitude convection motions took place and found
their form by perturbation theory.

1965 Busse took this analysis to higher order to show that the
only-stable steady convective solutions were two-dimensional
rolls. Above a second critical Rayleigh number Rb these
become unstable. Unlike the initial instability this bifurca-
tion depends on the Prandtl numberr= . For@W>5 , the
steady solution bifurcates into two steady solutions. For
rff Q , it bifurcates into oscillatory modes. The picture

is as In Figure 2, in which we are looking at the amplitude
|| II = A of the motion vs R.

~J

I,,

Figure 2.

1.2 A Motivation in Astrophysics

For the most part, the study of convection has been an outcast of GFD,
since most geophysical processes involve high Rayleigh number, turbulent
convection, which has generally been modelled as a small-length scale mixing
process whose effects on larger scales has been treated as an eddy viscosity.
However, we will try to keep in mind a real problem which clearly involves
convection and several interacting length scales, namely the transport of heat
from the solar interior.

Photographs of the apparent surface of the sun in visible light reveal
"granulation" in the form of cellular patterns cf about 1000 km diameter.
These cells clump into globs of about 5000 kin, and the surface velocity shows
"super-granularity" at a 30,000 km scale. Superimposed on these convective
patterns are sunspots, magnetic flux tubes usually in pairs of positive and
negative polarity. In the sunspots, the strong magnetic field inhibits
convection and so they are cooler at the surface, and therefore a prominent
feature of pictures of the sun.

"I,
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Sunspots obey an 11-year cycle of abundance; between cycles the maximum
number of sunspots varies dramatically. At some times, such as the Maunder
Minimum of 1550-1600, rediscussed by Jack Eddy, almost no sunspots were seen.
The goal of this course will be to try to provide a model which possesses

similar behavior.

We now go back and try to capture some of the features of buoyancy forces
in fluids by looking at a simple model. It will be the scope of future
lectures to show how the set of equations describing such a model is relevant

to the general problem of convection.

We adopt a Lagrangian viewpoint and focus our attention on the motion of
an idealized fluid particle through a surrounding fluid. The fluid particle
has mass m, volume V, density YO and is uniquely identified by its position z.
The forces on such particles are due to gravity, buoyancy and drag and can be
written in the equation of motion as:

We have chosen g to act in the negative z direction. We can write m

and if the fluid is almost incompressible we can approximate m by writing
't*/, V . Dividing through we get:

i ,0,- -V i (1)

Where, in the spirit of the Boussinesq approximation, we choose V to be a
constant. This is the first of our equations. If the fluid is completely
incompressible lo ,/o const and (1) has solution:

z (4 V' (2)

After the transient decays (2) describes the motion of a particle moving
at constant velocity. The effective buoyancy force is equal to the viscous
drag and the direction of motion depends on the sign of ( /D-A ).

More generally we expect the density of the fluid particle to depend on

the thermodynamic state and to obey some equation of state like ? - p,T).
If we assume that the temperature and pressure of the particle deviate only
slightly from the ambient temperature and pressure we can approximate the
equation of state by:

/0 # [/ 4,' cp Ot-
Where we have defined the isothermal 

compressibility k 7  =

and the thermal expansivity 
at = --I ( )0)

Again, for a Boussinesq fluid the variations induced by pressure dif-
ferences can be shown to be negligible and the equation of state reduces to

We now consider the heat exchanged between the fluid particle and its

surroundings; assuming this obeys Newton's Law of cooling we write

for some constant g The background temperature 7,_ depends on z, and

Mj
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possibly t. If we introduce a temperature excess = CT - TO) and
- br/pZ the last equation becomes

- (3)

This is the second of our equations. Equations (1) and (3) cannot, as
yet, be solved as we made no assumptions regarding the evolution of /6 . A
possibility is to assume To to be linear in z and A - 4 - const and
then the equations are linear. For such a set of equations a solution of the
form Z o et z  exist provided 7 satisfied:

g - . (4)

We notice that the translational invariance of the system shows up with
as one of the factors.

If -0 - 0 we have no viscous dissipation, and for 12 :P goA,

(i.e., the rate of exchange of heat is much larger than the rate at which
buoyancy does work) then the solution has

which shows that heat conduction slows down but does not prevent the runaway
of the fluid particle.

If v9o there exists a marginal mode provided

)L = =0,, =

and solutions become unstable for A> l. If 15 is not constant we can get
our third and last equation by, for example, writing the evolution of as
an expansion in powers of the heat transport. To first order:

= c~i~ -(5)

for some constant C and K. The term ir in (5) is the advection of heat and
the term KP is the conduction.

Equations (1), (3) and (5) for variables Z , , 0 are known as the
Lorenz equations. Their analysis is an interesting topic in itself, which
will be dealt with by other lecturers.

RE FERENCES

Brown, S. C., 1979. Benjamin Thomson, Count Rumford. MIT Press.

Middleton, W. E. K., 1968. Physics, 10, 299.

Saltzman, B., 1962. Selected Papers on the Theory of Thermal Convection.
Dover Publ. Co.

Chandrasekhar, 1961. Hydrodynamie and Hydromagnetic Institute, Oxford.

NOTES SUBMITTED BY
CHRISTOPHER S. BRETHERTON

AND FAUSTO CATTANEO
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SMALL NONDISSIPATIVE MOTIONS AND THE ANELASTIC APPROXIMATION

Edward A. Spiegel

Equations

We first recall a few technical points in the study of fluid (and other)
dynamics. The fluid is often pictured as a continuum of particles obeying
Newton's Laws. A fluid particle or element has an orbit in space that is
parameterized by time. The distinction among orbits is made by other
(Lagrangian) parameters. Thus x(t), a particular orbit, contains in its
description parameters (not written explicitly here) which distinguish it from
the others. By A we mean we ax/Vt evaluated on an orbit, and to emphasize
this we write

DX
Vt

For any function defined on an orbit

tflx fixed + x It fixed"

Finally, if we can express the parameters which characterize the orbit in
terms of x and t, we can write

x(t, parameters) - (x,t)

Dx
So =.

Df
Ft ft + ( ,Z)f,

we shall also write f = 'tf ft.

We now introduce the three conservation equations that are the basis of

this course:

(PLC).,= P-L 3.Pf = V

(PS)+ + C. CP G) = / Tp 0

where p is density, is velocity, ; is the fluid stress tensor, fe t
is any externally applied force field in addition to gravity (whose
acceleration is g), S is the specific entropy and f/TP is a vague notation
for thermal dissipative processes. I use Malkus-Veronis notation, which is
based on the idea that a reader can distinguish among T, T , T and the
like.

The simple model used in what follows is

T = -p + au; ()4 - i L

and we shall stay always in Cartesian coordinates. The thermodynamic equation
will be written using dH - Tds + . dp where T is temperature and H is
specific enthalpy. Also we write

dH - C p dT
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and get (with some further conventional assumptions)

DT _ v.'" +PCP t - O "2=Q=V -"

where F be heat flux and be viscous dissipation into heat. We note that

We take F - -K I T. The equations of state that arise in convection problems
are varied but, in this course, we shall not deal with Messrs. Saha and
Gruneisen. We consider the simplest gas as an example:

p = RP T
with R constant. The entropy for a perfect gas is

S - Cv"l rol/l1
where I is the ratio of specific heats. For small perturbations, (p, . , P)
about the static state ( p. ' ),

'Pt + -C +

where c2

These equations are combined to obtain a wave equation

For an isothermal atmosphere

po p. e-'zl1

where H - RTo/g is the scale height.

Note that
c 2 r ' RT°

and
Atl IrA

are both independent of (x, y, z). We seek wave solutions,

Ii



and find the approximate dispersion relations

coa, e c k +i- + )

ca

where

4-W

Convective instabilities are associated with gravity modes where ' Cl
Choosing a long time scale, relative to CO* is one way to separate out
gravity waves. This is roughly equivalent to letting

For the polytropic atmosphere

4T T.

the dispersion curves look something like

The time scales for the two modes in general do not separate, hence it is not
easy to filter out one kind of motion and study the other. If the temperature
profile is

T(z) - "7",. T0- Z,)

l ill l I N H U I II l
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Scale heights can be defined

The static statt, is
p z) = ?( 0i- ) ._,

Where the polytropic index

W,

In the limit Z /. - o C M -,> oo)

Hence is the limit of large z*, the atmosphere can be treated locally as

isothermal. The atmosphere characterized by

-f -ker

with entropy profile given by

where 'i is the polytropic constant. The atmosphere is said to be in

convective equilibrium where r = 7 , i.e., m = v-I

Wave solutions - uzte -R - ml-  admit gravity modes (see Lamb, 1931;
Spiegel and Unno, 1962) with the dispersion relation

"- + z zk)+ --- ]) M( zk)

where

and M(a;b;c) is the confluent hypergeometric function (see Magnus and Oberhet-
tinger, 1954). The relation is obtained by assuming rigid boundaries at z
(0,1). This law has the property

sign ( C- ) sign ( *-')

from which it follows ('- 0 for (7 . Hence if the atmosphere is in
approximate convective equilibrium, the nongravity modes are suppressed by
setting

This is the idea behind the anelastic approximation of Charney (see Ogura S.

Phillips, 1962): V.I
v. (p ) 4k



-9-

In order to understand how the gravity modes become unstable consider the
energetics of a displaced fluid element

+ C F JT
& = cjz+ce"

The Schwartzchild criterion for instability is SEXo or

cLI + a'
dz ¢

from which using P - R r T we obtain

as a necessary condition for instability. Hence, if the atmosphere is
marginally unstable, dS/dz = 0, i.e., r - T' , and the anelastic approxi-
mation can be invoked to filter out the acoustic modes while retaining the con-
vective instability.

REFERENCES

Cough, D. 0., 1969. The anelastic approximation for thermal convection. JAS,

26, 448-456.

Lamb, H., 1945. Hydrodynamics. 6th ed., Dover Publishers, N. Y.

Magnus, W. and F. Oberhettinger, 1954. Formulas and theorems for the functions

of mathematical physics. Chelsea Publ. Co., N. Y.

Ogura, Y. and Phillips, N. A., 1962. Scale analysis of deep and shallow con-

vection in the atmosphere. JAS, 19, 173-179.

Spiegel, E. A. and W. Unno., 1962. On convective growth-rates in a polytropic

atmosphere. Astr. Soc. of Japan, 14, 1, 28-32.

NOTES SUBMITTED BY
EVAN FISHBEIN and
PIERRE COULLET

CONVECTIVE EQUILIBRIUM AND THE WARM-UP PROBLEM

Edward A. Spiegel

Convective Equilibrium

Consider a hydrostatic atmosphere of layer thickness zo with a linear
vertical temperature profile of gradient ( = T*/z o . The vertical
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coordinate z is defined positive downwards, with z - 0 at the top of the layer
(Fig. 1).

T&,
T

TM T -Z) -o Z

Zo.

FIGURE 1.

In the static state, the pressure, density, and temperature satisfy

Dz 9 f hydrostatic equation

r 9pT equation of state for ideal gas

T Pz linear temperature profile.

where Z and g are constant.

We can solve for the pressure and density of this polytropic atmosphere

as a function of z

V~ ( yK#ZT.

where iT is the pressure at z - zo and m, the polytropic index, is given by

H* being the pressure scale height (H* = ). In terms of the polytropic
exponent, defined as

p and /0 are related by an equation of the form

p a const .,0.

In a state of convective equilibrium, the temperature gradient Is equal to the

so-called adiabatic lapse rate

/ - /adiabatic g/cp
pf



where Cp is the specific heat at constant pressure. In this case

* f --71

and

where J is the ratio of specific heats at constant pressure and volume ( "
cp/c. ). Using the Schwartzchild discriminant, we see that for convective
equilibrium

-L(4 -Ie IT.. d1-e 0
T dz C1 4

i.e., the entropy S and the potential temperature 9 are constant with height.

The sign of dS/ld gives us information about the stability of a layer.
We expect convective instability if dldz > o 0 For an ideal gas with
constant specific heats

- v A () f).4,, + coast

Thus

ds

and for instability r, must be greater than 1( , since dlnp/dz > 0. Just as
the conductive heat flux can be written in terms of a thermal conductivity as

Iconductive "-K 7 T

we may conjecture in this case that

convective - - t 79 CK

where K+ is a sort of eddy conductivity.

As an example, consider the sun, where the profile of S with distance
from the center looks something like:

SA

FU 2

F IGU RE 2.
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Here we assume that P , which is evaluated locally, has a variation with
height. Curve 1 is the profile in the absence of convection, computed
assuming that radiative diffusion is the only mechanism for heat transport
from the interior to the surface. There is a convectively unstable region
where JS/dr < 0 . If convection tends to bring the profile to convective
equilibrium we would expect a profile like curve 2, where ds/dr - 0 in the
former convective zone. The actual profile must be slightly super-adiabatic
in order for convection to be maintained (curve 3).

Response Time for Perturbation from Convective Equilibrium - the Warm-up
Problem.

Suppose that we change the temperature profile of an atmosphere initially
in convective equilibrium by heating it from "the side", that is, we introduce
a small perturbation to the temperature profile at time t = 0 by uniformly
heating the atmosphere from a vertical wall such that

T(Z) -* (1 + E )T(Z) - (1 + E ) (3Z

where E is assumed small. What is the characteristic "warm-up" time 9"
for the atmosphere to reach a new state of equilibrium with this new
temperature profile? This warm-up problem is analogous to the spin-up problem
in rotating fluids and to the heat-up problem in stably stratified incompres-
sible fluids (Veronis, 1970). We introduce:

a) The dynamical time Z7dyn for this problem as the time needed for a
sound wave (gravity waves are excluded in convective equilibrium) to propagate
vertically across the atmosphere. The scale height is given by

H, - Zo/(m + 1), and for m of order one, 11* - zo . Thus

T dyn = zo/c ^. H* /c

where c is the speed of sound (c2 - 7' gH*). We anticipate that an
atmosphere subject to thermal disturbances alters its hydrostatic structure on
a time scale Zd3 n.

b) The thermal time of the atmosphere Zg, X , where K_ is roughly
the mean of thermal diffusivity over z, weighted in favor of smaller values.

In the warm-up problem, the region that is at first affected by thermal
perturbation is that adjacent to the side wall on which the temperature
perturbation is made. Nothing very significant occurs until a time Tdyn
passes. In that interval the side wall disturbance has had time to diffuse
horizontally and establish a thermal boundary layer whose thickness, S th
is given by

where x is the thermal diffusivity. We obtain for the boundary layer

thickness

III I II I I II Ill ~ ~I Il l II I ii
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This is the analog of the Ekman layer thickness in the spin-up problem.

The physical response of the system to the perturbation may be summarized
as follows:

Initially sound waves are excited from the wall. These sound waves are
presumably of little dynamical importance, much like the inertial waves which
are the initial response in the spin-up problem. In the thermal boundary
layer near the wall the vertical extent of the atmosphere locally changes by
an amount

6 H = E z o .

This change in thickness is caused by a vertical velocity in the boundary

layer which is

From continuity this vertical motion must also engender a horizontal suction

velocity u in the direction of the wall

LA. U U _ U "
46 14 Z,

It is this induced horizontal circulation which ultimately determines the
warm-up time. Consider a ring of material of radius a with its axis
perpendicular to the wall (Fig. 3). The ring feels the effect of the suction
long before it feels the effect of the direct diffusion of heat from the
wall. As the ring is drawn towards the wall it expands isentropically

FIGURE 3.

Using the ideal gas law and the relationship ST/T C £ , we have for the

relative change in the ring's density

ie -
The relative change in the radius of the ring is given by

CL
?S
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Assuming a is of the same order as zo

Cz-i

The characteristic warm-up time for this problem is given by the time it takes
for the ring to come to the new equilibrium dictated by the altered sidewall
condition. Since the distance traversed by the ring is of the same order as

Lk.

Substituting in the previously derived expressions for So. and u

ZOf ,)

For zo - H*, - w is approximately given by the geometric mean between

the dynamical time Z dyn f H*/c and the thermal time for the whole atmos-
phere "C therm - //A/ . Generally

C dyn < Tw <'Ztherm

Just as in the spin-up problem, a characteristic response time calculated
assuming only simple diffusion without consideration of the induced circula-
tion is much too long -- the induced circulation brings the fluid to equilib-
rium much more quickly than diffusion alone could.

As an example of where this distinction between response times is impor-
tant, consider a two-layer model of the sun consisting of the base of the
convective zone and the top of the inner radiative zone. The two layers
adjust to small perturbations on different time scales. In the upper
turbulent layer Ctherm is about one month and Udyn is about half an
hour, yielding a warm-up time tw of a few hours. In the lower diffusive
layer the thermal time is very long -- about 106 years, while r dyn is
again about one-half hour. Thus - w is on the order or a few years in the
subconvective layer. There is now a strong suspicion that the luminosity of
the sun is not constant -- it appears to vary in consort with the solar cycle
of 11 years. Why should we observe a phenomenon with a period of a few years?
Both the dynamical and thermal times of the diffusive layer are of completely
different orders of magnitude, but the warm-up time fits the bill, and we
should expect the sun to be very responsive on this time scale. A model has
been proposed where "ropes" of hot material are pulled up from below by mag-
netic effects, engendering thermal changes in solar magnetocline which manifest
themselves in a variable solar luminosity with a period of about " w.

Finally, we note that several other characteristic times may be defined.
Just as the thermal time z /i. represents the time for heat to diffuse
across a layer of thickness zo, the viscous time Z&/V represents the
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time needed for momentum diffusion in a fluid with kinematic viscosity "
The convective time is the time it takes for a parcel of fluid to "fall"

across the layer

r-convective Y2o. I/

where g is the reduced gravity due to the buoyancy force. In the next
lecture we will study the anelastic mode when we move slightly off convective
equilibrium. This "quasi-anelastic" approximation is analogous to the quasi-
geostrophic approximation. Following Ogura and Phillips (1962) (see references
in ":Small Nondissipative Motions and the Anelastic Approximation") , this
relevant time scale for the perturbation equations is

T convective. As long as - convective -3> ZCw we are near

convective equilibrium, and sound waves are effectively filtered from the

system.
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QUASIANELASTICITY

Edward A. Spiegel

In many geophysical situations, we are trying to model a system in which
rapid vertical mixing is taking place. We would like to scale the equations
of fluid motion so as to use the nearness of the system to convective equilib-
rium. The result of such a scaling is the anelastic approximation.

We will, for simplicity, restrict ourselves to an ideal gas whose thermo-
dynamic properties -- K, the thermal conductivity; p& , the viscosity; Cp,
the specific heat at fixed pressure; R, the gas constant normalized with the
molecular weight; 7" , the ratio of specific heats, and local gravity g --
are constant. Our first task is to identify static equilibrium states of the
gas, which must obey:

/oNT

With the geometry of Figure 1, we can see that the solutions to the above must
have a linear temperature gradient and thus must be polytropic:

1L, - 7Tp(,

=r , CL)
Y -eTcz
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where 7F , P , and ( are the pressure, density, and temperature at the
bottom of the gas, and

_q Z/" R(1)
= , , z z/z. 7, (z) zlzo

zo

T

FIGURE I. THE Geometry of the Gas

To isolate the gravitationally driven motions we assume small vertical
entropy gradients, that is, that the atmosphere is nearly in convective
equilibrium. This condition,

j Pr

implies

- I

and thus that vertical temperature gradient is near its adiabatic value

C ST) I '- A

Imagine a real gas in motion. We would like to consider the motion as a
perturbation away from an adiabatic (,i - 'I/-i ) static state described by
(1). Which state do we pick? Out of the two parameter family, we can pick,
for instance, the static state which preserves the average mass and average
basal pressure of a fluid column:

V = p-Y,z ,)

0 oz J / ( ,z,*) dz

where p and /0 are the pressure and density in the real gas, z its depth,

I 1 II1 I lt , __ . , "
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and - is a horizontal and temporal average. If

-P()~ TT p cz

the above atmosphere is near convective equilibrium.

The time scale of convective motions then becomes -C conv (i)
which is much longer than the other time scales in the problem:

Cconv >C warm '> -sound - Co

Thus, on the convective time scale other adjustments are effectively instan-
taneous, sound waves just being an ignorable background sea of noise.

Consider the small, order r , perturbations to the basic state as given
by (1) /T (p0' C W)

P /. +(2)

- = T, +
and nondimensionalize the kinematic variables with respect to the reference

length zo and the reference time 
"Zconv = (Z*/36) .

Upon the neglect of relatively small terms, the momentum equation becomes_,I - A _
=t () - M (3)

here the nondimensional viscous stress tensor is given by

'T.. aw 9aZ-O

and the effective kinematic viscosity 2* = . Similarly, the entropy
equation is simplified to

S+

where is the nondimensionalized mechanical dissipation. The substitution
of (2) and the rescaling of the mass conservation equation and the equation of
state is straightforward. In equations (3) and (4) some nondimensional
constants appear. The factor is just a number of O(1). The constant
Gr , called the Grashof number, also appears and must be assumed to
be 0(l) so that viscous dissipation can be included. For thermal diffusion to
be retained we must also have the Prandtl number a' -. /K of O(1). Only
when these two numbers are 0(l) are the convective, thermal and viscous time-
scales of the same order of magnitude.
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Having established which terms are neglected in the quasi-anelastic
approximation we can now return to the dimensional form of the equations. In
their general form, allowing for the variation of some of the thermodynamic
properties of the gas, they read

PC u

L =L T"L' (- T,) K 4 , p--.

- 7. + r ( T7+

+ T, PC t dT,
-+ (Cp-,p,) C 7 T-T)§- + -f M.T

_~~~~Z I.(e  F

The original equations have essentially been modified by ignoring the
effect of the small density deviations from convective equilibrium in the
inertia and in mass conservation. The equations have been linearized in T, p
and p , but the problem is still nonlinear due to advection of momentum,
temperature, and pressure.

The Boussinesq Approximation

In many applications the layer of convecting fluid covers only a small

fraction of a scale height. This is used in the shallow layer approximation
which will be dealt with later. If additionally the horizontal scales are

assumed to be of the same scale as the vertical motions, then the Boussinesq
approximation follows.

Long horizontal scales can be generated in the Boussinesq approximation*.
In such cases the approximation needs to be reexamined. It is important to
remember that the Boussinesq approximation may not be a consistent scaling of

some convection problems, e.g., convection at large Prandtl number, and even
as a model may not have the correct bifurcation structure.

The Boussinesq approximation follows from

8 = -A- '& II

where d is the convecting layer depth and 4, Is the minimum scale height in
the layer (note that - is now vertically upwards). All the previously defined
timescales are replaced by changing the atmospheric height Z. by the layer
depthd , the amplitude of the motion being determined by a balance between the
new convective and dissipative timescales. Using this assumption we find that

P= cc CO) +4 a(S)N

and thus PC may be taken to be a constant po . The pressure perturbations
in the layer are also small and can be ignored in the equation of state.

*For example, by constant flux boundary conditions, large scale modulations of

small scale structures or in cells much longer in one direction than another.
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In the heat equation we find that the dissipation 7 is small compared
with the diffusive term (at least for 0(l) Prandtl number) and that to leading
order

Dr )Pc

Thus the Boussinesq version of equation (5) is just

= - 7 p 4,

,Acp RT PLO + .(cT)

p - p.C[ - T )] (6)

V.L4 0

where T*is some reference temperature at which P ,.

The boundary conditions to be used at z - O,d are somewhat arbitrary. No

simple and physical choice is obvious. Usually used are rigid boundaries:

= 0 and T = given;

or stress free boundaries

AA
u *n =Uzxn = 0; T = given.

Note that at a rigid boundary the above could be changed to + C n 0 O
where c measures the mean free path of the fluid's constituent particles. If
an eddy viscosity is used, then perhaps c should be related to the eddy size.

Nondissipative Boussinesq Linear Dynamics.

To simplfy the problem even further we consider the inviscid non-diffusive
Boussinesq equation ( ft - K = 0) for small velocities. This allows the
nonlinearity in the velocity to be neglected. The analysis is relevont to the
stability of the purely conducting trivial solution.

Let To(z) be some initial given temperature field and introduce the
dependent variable 0- T-To to replace T. The set of equations (6) reduce
to 2(

to - O .4- Z

Do iPW (7)

'7oL - 0
where

- +

Taking the z-component of the V x 7 x of the first equation in (7) gives the
following simple equation

V- 8

La
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Try for a solution of the form

(6) %J(Z1

and the above equations give the following equation for C

where k is a measure of the horizontal wave number. This equation guides the
choice of the horizontal geometry of convection, the question being: how to
tessellate the plane? Usually a planform of regular polygons is preferred.

The expression for the growth rate of the modes is

where n is the vertical wave number. The solid line in the following figure
is a graph of n2 as a function of k

2 :

t

Notice that in the limit of convective equilibrium (1 0) there is no
growth. The upper limit of the growth rate is given by SmtP. instead of
O( 5W ), and is due to geometric constraints rather than the fluid's com-
pressibility. The inclusion of the dissipative terms, which extract energy
preferentially from short wave lengths, causes the growth rate M to be
maximized at some finite wave number k, and gives rise to the dotted line of

the figure.
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DISSIPATIVE BOUSSINESQ DYNAMICS

Edward A. Spiegel

We want to investigate how the inclusion of dissipative terms alters the
behavior of the fluid at the onset of convective instability.

We know that for a given horizontal wave number a, there is a value of the
Rayleigh number Ro, above which motion on the corresponding horizontal scale

becomes possible. Our first task is to determine the relationship between R
and a.

The full Boussinesq equations are:

S4- WU..VLL ~p;Ir.4 .. +36 9 + (1)JA

(2)

k + V9vW 4. K. V, 9 (3)

where u = (u, v, w), the temperature T = Tstatic + e and ' = -4

At the onset of convective instability we expect the velocity and temperature
fluctuations to be small. We may therefore determine the initial time
dependence from the linearized equations with the understanding that if we

find instability the linearization quickly loses validity. If we omit u . u
from (1) and apply Vx v-s we find

As
5o 9 s~~ a V ()(4)

where Z is a unit vector. Equation (4) has the components

(5b)

while the linearized version of (3) is

(9,)e KW = (5d)

Before we proceed further we discuss the kinematic boundary conditions:

A number of possibilities are available but it is usual to restrict the

choice to:

rigid boundary w - u.z - O

free boundary w, ku, 3V t a t
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We postpone the choice of the thermal boundary conditions. If we take

y(5a) - ax(5b) and define the vertical vorticity - v- t3L.

we get:

(a, -0*-) " 0(6)

We can seek solutions of the form:

ot e "  ,,) Z --

Then we get Vi - and

Ls -v,,D-') -) '47 : C- 0
(7)

where

If z - 0 and Z - d are the top and bottom, the free B. C.'s give '4'o)
!d) - 0 and we get

4:0 ~ k~ (8)

which implies that in the linear regime the vertical vorticity decays.
Clearly we expect it to couple to other modes at finite amplitude, but for the
moment we leave it at that.

In a similar manner we may separate the horizontal structure from (5a) and
5(d) to obtain

t v(V-)]3 
(9a)

(9b)

= - k14)(9c)

where and 0 are functions of Z and t only.

We choose d as the unit of length, d2 /k as the unit of time and A T
Pd as the unit of temperature, and let

Vk

(the Rayleigh and Prandtl numbers respectively).

The nondimensional equations are

-= (10a)

Vi (10b)



-23-

where 6 = D2-a2 and a - kd is the dimensionless horizontal wave number.
We still have the choice of thermal B. C. Again we consider two idealizations
that are used in the literature for the top and bottom boundaries:

@CO= L) -o fixed temp.

fixed flux

corresponding to perfectly or poorly conductive surfaces at Z O,1. Clearly,
for physical applications a combination of the two would be appropriate but
for illustration we choose ( ) 0 on top and bottom. Then if we try
solutions of the form:

(AY e(& )

we obtain trigometric functions as the eigenvectors of the operators in (10).
This was, in fact, the motivation behind our choice of B. C. Equations (10)
give

dSt = 0

as the dispersion relation for where V2 4 atA: . This gives

0_ -r ,)0-

and if - <<I the two roots are

1 - T O -I )  ( 1 2 )

The condition for marginal stability is obtained by setting 0 -0; for n = 1
this gives

thsgvsR - Ro . j6/a2 (13)where q2 - ql. - (

In the Ro - a plane we get a curve like Figure 1.

FIGURE 1.
The marginal value of R as a function of horizontal wave number.

The minimum (or critical) value, Rc occurs at ac.

LA
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We now want to find how the curve in Figure 1 is modified by a change in the
thermal B. C. This time we fix the flux and consider the equations governing
the steady state:

= (14a)

' ( - (14b)

The boundary conditions are DE - 0 top and bottom. In effect, this
problem was partly solved by Jeffrey, though its meaning was not appreciated

until the 1960's by Sani and Hurle, Jakeman and Pike (1967). The essential
point is that R has its minimum at a 0 0. Since a is small, we rescale W;
let = W/a2 . Integrating (14b) from Z = 0 to Z - 1 we find that

e 0 JW dZ (15)

To zeroth order we find

This gives . - const = o ~o Piz where P(Z) is a 4th order

polynomial such that P"(Z) = 1. The next order gives

51&-= a. ( I- R. 1'(z))

which if integrated from 0 to 1, becomes, on use of (15)

LfDI?(z dz]1
It can be shown that the linear stability curve becomes Figure 2.

1Z. 0

FIGURE 2.

Linear stability calculations are a useful tool to determine the value of Ro
and the initial structure of the motion. They are clearly unsatisfactory when
evolved in time as they predict that the amplitude of the motion will grow

exponentially without limit. To get a more reasonable picture we must include
the nonlinear properties of the equations. These describe the reaction of the

stable modes to the exponential growth of an unstable one. We expect these
modes to provide, eventually, a way to prevent the unlimited growth of the

unstable modes.
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If we describe the amplitude of the motion by A we expect that for R Just
supercritical the evolution of A is governed by the Landau equation

A A1
exp growth nonlinear int. with virtual modes.

(Terms of order A2 are omitted as the equations are invariant under A -b -A).

We now seek to derive the coefficients of the Landau equation for the case
of 2D convection. The velocity is solenoidal and can be written in terms of a
stream function:

The equations for t and e become

(a 47' + ±j('Vs4') (16a)

(a-v4)-e - J(40' ) (16b)

where J (f,g) = fxgz - fzgx. We fix the temperature concentrate on top
and bottom and assume that on the sidewalls of the cells (x 0 0, 2 )C /a) that
there is no heat flux (9', - 0) and tangential viscous stress C Y'#V - 0). On
top and bottom, 9 , , Vl9 @l vanish. Let R be slightly above
marginal:

R - Ro(l + - 2).

The natural time variable would be, but suppose that c7- 1 and use Z't.
We rescale the variables:

' $b:" t- ,o* R

)

and get

(17)

where

I= E +L ' 3*Pv, ) 1 . L, t

JL-, II I I I I II
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and

We than expand V in powers of C : = Vo + C V1 + E"V2.
and find

At each order n in powers of L in order to solve for Vn we must impose

V( .f',,) =o (18)

where V - 0. This is known as the solvability condition in classical per-
turbation theory, the removal of resonant terms in the suppression or the sup-
pression of secularities.

By inspection we see that I 0 0; also it is easy to deduce

[L-." *qR ,, o) 3' 0 o

L J(4 +) *J(W,&b) ,+ L v,.

To zeroth order we recover the linear theory result 4 = O.(A sinax sinK7- (4 I'O

v. % V.-V. A
B cosax sinxz )-

il> S /c.choosing the +-v root and B = -9A. A = A(t) and is arbitrary

thus far. Clearly we also have i sinax sinrx- We plug Vo into ourVcosax sinrt)

expression for , , and get

= >aiE I F

Condition (18) is satisfied for all A and we find

V,  + V. -
G-. &ima -Z 1J TIE



-27-

We now go to the next order and calculate

1(19)

cof-&61~ £iRiZ(' Aza.A t- rr-AC) + W a- ACCSxsii3r

Condition (18) now gives an equation for A, namely

(i+-) A A3 O-- o (20)

This describes the bifurcation of steady solutions from the static one at

R - Rc. Schematically the result is displaced in Figure 3.

_ _ _ stable

stead unstable

v-tatic ---............. R

FIGURE 3.

One of the characteristics of this result is that the value at which

steady solutions bifurcate is independent of o- . By following the evolution
of the steady solution Busse has shown that at C- 0 08 two more growing
branches bifurcate from the stable steady ones and for 0- finite two over-

stable branches appear. Near e- we may expect codimension two behavior

(see below).

A steady _ 3Lowng

static S
R

c- '> OC

stead overstable

static 

v

e- < -
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Linear modes (including vertical vorticity modes) for fixed temperature and
slippery boundaries. Ledaux, P., M. Schwarztchild, E. A. Spiegel. Ap.J.

NOTES SUBMITTED BY
FAUSTO CATTANEO and
PIERRE COULLET

CONVECTION ON VERY LARGE HORIZONTAL SCALES

Edward A. Spiegel

1) What are the realistic boundary conditions?

The determination of boundary conditions is not a trivial matter,
especially thermodynamic ones. Usually a constant temperature is imposed at
the boundaries, thus assuming perfectly conducting walls and inhibiting large
scale horizontal motions. Consider the more realistic situation (see Fig. 1)
of a liquid layer bordered by two thick conducting plates

ks plate

kf liquid

ks plate

FIGURE 1.

(constant conductivity kf, ks respectively). In the plates heat is trans-
ported only by conduction, hence, in the static state v996 = 0, where 9s
is the temperature profile. (We consider only the case of the upper plate; the
arguments can be applied to the lower plate as well.) The horizontal depen-
dence can be decomposed in periodic solutions of horizontal wave number a.
The vertical axis Z is positive upward, the origin is the lower surface. The
solution is

9S= Ac"xy) cash (ax) s.a)

where A and B are combinations of sinusoid all with wave length a. The upper
boundary (not in contact with the fluid) is a constant temperature, hence

A(x,y) = -B(x,y)tanh(ah)

At the interface of the fluid and plate As = A(x,y). It is natural to assume
that flux and temperature are continuous. Thus, we have

e,) - 0o)

to) - C0
I1~~ ~ Iz I I I I... . [ 1
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where 9F represents the temperature in the fluid. Then,

I A = A- o)

Eliminating A by using the former equation and the boundary condition, we get

or {t) , d/ f (0) where s = Z4 4aA)
z = 0 43 o

A similar calculation shows that, at the upper surface of the lower plate, we
get

The change of sign results from the presumed antisymmetry of the geometry.

As a result, we are able to generalize the boundary condition at the inter-
face to

B + C = at the upper boundary

and B 0- - C 0€ O at the lower boundary

where B and C are appropriately determined functions of x, y, a and the
geometry of the plates. It is interesting to consider two limiting cases of
the above equations. That is, when C -o 0, we obtain the constant temperature
condition, and then, when B -- 0, we obtain constant heat flux case which was
already discussed by Hurle et. al. (1967) in the case of the Boussinesq
problem (see "Dissipative Boussinesq Dynamics", this volume). The change of
boundary condition greatly affects the stability curve (Hurle et. al., 1967).

Such a change is schematically illustrated in Figure 2.

FIGURE 2.

As the boundary becomes a poorer heat conductor the critical Rayleigh number
becomes smaller and the wave number of the most unstable mode approaches zero
(in the case of fixed heat flux condition it becomes zero). These phenomena
can be understood as the thermal penetration of the convection layer into its
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boundaries. If the boundary is perfectly conducting, the thermal penetratioi
does not occur. However, on the contrary, if the boundary becomes a poorer
conductor, it will penetrate deep into the boundary and in case of fixed heat
flux, it will do so indefinitely (see Fig. 3).

4 Codco
Perfect Conductor

f I I I
SI I I

Perfect Conductor I I
I I

Poorer Conductor Fixed Flux

FIGURE 3.

This is the reason why the large horizontal scale motion may be preferred In
linear theory with fixed-flux boundary conditions.

2) Some Examples of NonBoussinesq Convection

As an example of nonBoussinesq convection, we consider a fluid
containing microorganisms, (such as tetrahymena pyroformis) which are
negatively geotactic, i.e., like to swim upward. The density is expressed as,

where C is the concentration, satisfying the equation of motion,

j4- .L7 /C vZ - 4 C '14
upward dispersion advection
swimming

where -U is the geotactic velocity, K(c,Z) is dispersion coefficient that
models random swimming, and u is the fluid velocity. If k/u = 

/c) -c * you get
a polytropic solution, C w 1 • The convection arises as high concentra-
tion fluid descends and organisms swim up to maintain the concentration
gradient.

Another example of nonBoussinesq convection very similar to bio-convection
are: "chromium plated" stars which have an excess of (Cr, Mg, ---) in their
spectra. These elements sense the radiation force, and are levitated to the
surface, giving rise to a positive concentration gradient, in an analogous
fashion to the negative-geotactic microorganisms. A similar instability
occurs as shown by Lin (1980, Columbia dissertation).

3) NonBoussinesg Convection on a Very Large Horizontal Scale

When we consider convection having large horizontal scale, we can
find that nonBoussinesq terms may become significant. In other words, to
guarantee the validity of the Boussinesq approximation, the condition that
horizontal scale be much smaller than a critical value is also necessary when
the heat flux is fixed on the boundaries (Depassier and Spiegel, 1981).
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J Consider convection having large horizontal scale. We suppose that
the thermal boundary conditions at the upper and lower surfaces are those of
fixed flux. We find, from the first order perturbation analysis, that the
most unstable mode has the wave length of infinite length (Hurle et. al.,
1967).

Assume the equation of state is slightly nonBoussinesq,

('i:: C. I1I- Oc(T- T.) +- ot S ; T-T. )] (1)

q is an arbitrary function with q(O) = 0, and 6 is a measure of the
deviation from the Boussinesq condition, assumed small. The basic equations
are

P .+ Lk e( 2 )

VJ. L& 0

(3)

p.Cp ( V = . T) (4)

We restrict ourselves to two-dimensional flow, and introduce a stream function

. After normalization d (depth of convective layer) as a unit length,
,46Cp -1'/ as a unit of time, 40 as a unit of density, Fd/k, as a unit

of temperature (we use conventional symbols of fluid mechanics). We obtain

- ., a--[v'~Ij #(5)

-(6)

where the primed means /az, R/ X '" > and
is a perturbed temperature defined by T - Z + . We take the

coordinate as indicated in Figure 4.

fixed flux - F

Z = 1/2d

Z =0 -----------------------------------

Z = -1/2d
fixed flux F

FIGURE 4.



- 32 -

The boundary conditions are

0 at z= Zd (7)

We rescale the above three equations as follows:

' CX s= c* , k =F j , (8)

and obtain

Z - [i -r - +L9. (9)

z- )]L9 2S - (10)

Integrating Equation (9) over Z from -1/2 to +1/2 we find

9 >= <9>- -4-(11)

A.
where *..> = --- 4

t

In the process of integration, we used the temperature boundary conditions at

Z = ± 1/2 of (7). Equation (11) is an evolution equation for <0O>
We expand

D - o + + f-, 4 E,+""

II Z 4- ET"., 4- R, 4-

and substitute these into Equations (9) and (10). We obtain the lowest order

linear equations

0oZZ = 0

(13)

Considering the boundary conditions, we have

e) fviS) (14)
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Then we can write as

R. Tr. (15)

where

Tv: (16)

At this point we use the kinematic boundary condition of (17), that is,

O -' o n_ = -Z (17)

We have

-L Zj (z 4 2' 4 18

Now, the problem is to derive the equation of f by using (11). Putting

Equation (15) and (18) into (11) we get fxx 0 0 or Ro - 6'. in the leading

term. We need the computation of the next order. Selecting the case of Ro
= 6 which is coincident with the critical value of R derived from the

Boussinesq approximation, we find

+ K

(19)

where -Q 4  3° and

17 Q is defined as

2 "2

If we assume that (T-To) 'k (T-To) 2 , that is, the expression which
we can expand by the Taylor series, we find that F f2 + const. We have

the evolution equation as follows:

-s +. r~r /~I A (').-0 (21)

(note F = Jf 2 ).

In this equation, X represents the nonBoussinesq contribution. In

solving equation (21) we must require suitable boundary conditions. They may

be V. - 0 and V",. = 0 at the end points describing no heat flux from the
neighbor and shear stress free. These conditions are converted to

Son (22)

Another important condition derived from (22) is
S= 0 (23)

!A
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Ti (

To the order of our present approximation conservation of mass gives

0 =(24)

To solve (21) with conditions (22) and (24) we expand f by a new small

parameter , that is,

C 1,S + qf(, &N~ 61 ~ ~~ S)
A (25)

r r + + 6r, + 'rz +--

In leading term we have

4'. = ASs)c&(26)
with ro = kolL

(i.e., R = Rm = 6!(l + Cka) = Rc(l+ K4')) (27)

In higher order we find a Landau equation,

=-- 2 X . A) (28)

where r2 measures R-Rm. Equation (28) states that bifurcation from R

Rm to the subcritical area exist, if the wave number 1 is less than a

certain transition wave number a(& .
+ z

a t, - oL - I 3

The rough sketch of this situation is shown in Figure 5.

A

o

FIGURE 5.

It is clear that, if we do not take the nonBoussinesq term into account

( - 0), we cannot find such a solution. This may be interpreted as follows:

l9
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The small parameter may be considered as j where H is a vertical

I characteristic length associated to a nonBoussinesq effect. To guarantee the

Boussinesq approximatLion we require the condition

d dN
oe4

must be small.
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NOTES SUBMITTED BY
SATORU HONDA and

EVAN FISHBEIN

MILDLY NONBOUSSINESQ CONVECTION WITH FIXED FLUX

Edward A. Spiegel

Using the scaling

we have arrived at the evolution equation of two-dimensional fixed-flux

convection for the leading order temperature perturbation e= f( , s) +

O( C- ). It is

*fS+ WTfif 4 r =V (r
where the Rayleigh number of the flow is determined by r in the relation

R = Ro(1 + 0- r)

and K and -V are constants depending upon the boundary conditions (K = 17/462,
10/7 for rigid boundaries, and I is a parameter measuring the non-

1
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Boussinesq effects. Equation (1) is solved on an interval in t of length
2 L/k subject to zero velocity ( => no neat heat flux) and no viscous stress
boundary conditions at - 0, 2 7(/k.

Now suppose that we are interested in that part of the parameter regime
where the behavior of f is weakly nonlinear. Hence f can be represented as an
asymptotic sequence in some small parameter h that measures the nonlinearity
in f. Thus substitute

= 4- F , 4-

r - . + r * r-. 1 .

into equation (1), group like powers of h and solve the resultant recursive
set of equations.

The first order equation is

with solution

Fo = A(r)cos(kt) , ro = Kk 2

where the condition ro =Kk
2 implies that near linear behavior of f is

only found for values of r near this particular ro . The equation at second
order is

Fo F - Wi F = -r A V cegckg) -z. A-k2* Cs6(2

To eliminate the secular forcing term in cos(k ) we must choose rI = 0.
Thus the second order solution is

Substituting the solutions of the first and second order problems into the
third order equation we find that it has the form

-I, E- VA 4 'S (k+)A 3 C., k

where A - At. To eliminate the secular term in the solution for F3 we
must again have that if the coefficient of cos(k ) in the righthand side is
zero, hence defining

k(2)
k:I
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we end up with the following Landau equation for A(t)

A r2k
2A + 15)(4 -

From this equation we see that the amplitude of the steady solution is

It is then also easy to see that for k < k. we must have r2 < 0 and the
steady solution is unstable; while for k > ko we must have r2 > 0 and the
steady solution is stable, see Figure 1.

A1  A

Act

k<k. , FIGURE i. k ? K, ) r, >o

We now turn our attention to the steady nonlinear solutions of the

evolution, equation (1). Firstly, note that since f. = 0, f is constant in
time and mass conservation requires that this constant be zero to the accuracy
of the Boussinesq approximation. Define new variables 0 and y and new
parameters 1P and a bygQ1) = C )'  J --1f .

r

where ko is defined by equation (2) as before. Substituting into equation
(1) and integrating once we find the following nonlinear ordinary differential
equation for

*0
Pip ~ (3)

where 0 denotes d/4j . Note that there is now no . dependence appearing
explicitly in the problem, it does, however, occur implicitly through the
definition of ko .

Replace by the new parameter P where

- + o( 1 p

then for P near zero equation (3) has solutions that are only weakly

i4,
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nonlinear. In terms of this new parameter the Rayleigh number is given by

R - Rll +K a2 + ao 2p

where a - £ k and ao - r ko are wave numbers in the x coordinate.
Thus we are looking at solutions for Rayleigh numbers near the marginal R. =
Ro (l + Ka2) for the given wave number, the difference from Rm is
measured by P.

Equation (3) can be integrated twice by introducing the function

G( j)=

which transforms equation (3) to the equation

d*f&

which can be solved to give

z = 2A .0kf + 2. .wJ -P + + zP (4)

where A and B are integration constants. This equation can be written in the
form of a particle in a potential well. Let

X P j) 4-

then f measures the amplitude of the motion and X represents the "particle's
height". Equation (4) can then be written as

j2 + V(X) - 0

where

V = ZX + E (c.dX- K) + C Si,4,,X

Cbserve that the shape of the potential we'L varies as the "energy" E is
changed. The outcome is that there are no solutions unless

(Sk -.

-- - " i -- I l II lI I I I i~l - " II il "" -(ca---
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This behavior is summed up in Figure 2 where we see that for ot2 there is
a supercritical bifurcation to a nonlinear steady solution; for o< <I there
is a subcritical bifurcation and the suberiticality is limited by the Oe 0
asymptote at P = -3.

I

FIGURE 2.

Amplitude of steady nonlinear solutions for
various wave number parameters 0( -k/ko.

Transition to Finite Critical Wave Number

Consider the situation

where the convecting fluid is sandwiched between two conducting plates of
thickness ' D. The fixed flux temperature boundary condition is now applied
on the outside of the plates. In the fluid we use the previously derived
equations of motion while in the plates there is the purely diffusive problem

aot -t

We consider the case where the temperature boundary conditions of the fluid
and the plates are just

X continuous on z -§ ' -z

As before we can obtain (Poyet, 1979) an evolution equation for the
temperature perturbation which is

',-Ir + ' :);
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But now kc depends on D and • - K4/ (the ratio of the plates to the fluids
diffusivity). The relationship is given by

S+ A13 C7 0 r) 3 crJ7] //4gr

and the regions of different behavior in the (D,t) plane are shown in Figure 3.

thick
plates

.
<o

thin K * O
plates

bad good

conductors conductors

FIGURE 3.

We conclude that in the regime of plate configurations where K > 0 the
Rayleigh number versus wave number marginal stability curve looks like
Figure 4a, the situation is similar to the previous discussion and so there is
a subcritical bifurcation for wave numbers smaller than some critical value.
For K > 0 the Rayleigh number, wave number curve looks like Figure 4b and
bifurcations are supercritical.

(a) .c>o (b) 16<o

FIGURE 4.

The transition between one sort of behavior and the other, when K is small
and of order C' , is also interesting. We have to go right back to the
beginning, set

R - Ro + C R4

and scale the time with C' and 9 with E . Then the analogous evolution
equation to equation (1), involving a term in , is sixth order

instead of fourth order. It turns out that R4 is positive and so Figure 4hcan be redrawn to give Figure 5 for values of K just less than 0.

a
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K'(eo) xO() FIGURE 5.

In conclusion we remark that we know that the Boussinesq approximation
breaks down on a horizontal length scale (dH)i/ 2 corresponding to some wave
number aB, say. Then the Boussinesq approximation may still be reasonable
for situations covered by Figure 5 whenever the wave number of the minimum of
the R(a) curve occurs at a wave number bigger than aB.

Equations of Shallow Convection - One Version

We now derive a variation on the traditional two-dimensional shallow-water
equations. The usual shallow-water model assumes a homogeneous fluid (not
necessarily water) with constant density As , but here we relax this
assumption and include a Boussinesq contribution

where 0- is again the thermal expansivity and L is the temperature
perturbation. Bulk parameters such as o( , XC and -V are assumed constant
throughout the fluid. Although both friction and baroclinicity will be
included in our model, we will assume that to first order both 9 and the
horizontal velocity component u and independent of Z. The height of the free
surface above the bottom is denoted by h(x,t) (see Figure 6).

Z

FIGURE 6.

The boundary conditions are that w - 0 at z 0 0, p Po at z - h(x,t), and
that a particle on the surface remains at the surface, i.e., z - h is a materi-
al surface. The boundary conditions for and u remain as yet unspecified.

Assuming hydrostatic balance

Pz g "

So, upon Integration

f1

p L z P
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where we have used the fact that p po at z = h. Substituting for

p P0 + gp0 h - Z - N .. dzj

Now using the fact that z = h is a material surface, we have for z = h

V (h-z) = ht + uhx - w = 0

or
w(z = h) = ht + uhx

Integrating the incompressibility condition v.u = 0 vertically from z = 0 to
z - h

J"(ux + wz)dx 0
which implies

hux + w(z = h) 0

where we have employed our presumption of 0(I) absence of vertical shear in

u. Using the result for w(z = h),

ht + (hu)x =0

which is the expression for conservation of mass in the context of

shallow-water theory.

In the Boussinesq approximation the x-component momentum equation, with
the previously derived expression for the pressure inserted, is

CAt+ Ac4,-t- W Lj z~ - -Z Bet f dz7 + 2L

This can be rewritten in flux form

-t + (uu), 4-. - L x - ,- ,,X

+ V LA + higher order terms.

The higher order terms might include a boundary term in 0 if we stray from
a constant temperature B. C. on the free surface or a -V Uzz term if we have
a no-slip bottom boundary layer.

Again integrating vertically and ignoring any z -dependence on u and e

LA'+ h(L'.L)x) 4 Ltk + L,4kx)

u
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or, collecting terms

The thermodynamic equation can be written

Here

-~ ~ (dT, * ldadiabatic)

where the temperature T = To + 1 , and To(Z) is the static temperature
profile. Performing another vertical integration

E) +~, C CT - 1 (CP

Regrouping, we have our third governing equation for h, u and 0

= + CA- h  + a
C t

The existence of a free surface now allows the propagation of gravity
waves - in particular a thermally-induced bore or shock wave might be possible
if the fluid is heated from below. Another approach is to use amplitude
expansions as in the derivation of Boussinesq or Kortwig-DeVries equations.
That has been begun by Depassier in order to study the possible existence of
convective solitary waves. The corresponding double-diffusive problem with a
free surface does seem to show coherent wave-like solutions at marginal
stability.
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NOTES SUBMITTED BY
BRUCE LONG and
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DOUBLE CONVECTION

Edward A. Spiegel

"If I have seen less far than other men, it is because I have stood
behind giants". - Et. al.
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In this lecture we will explore the codimension two bifurcation of thermo-
haline convection, which occurs when the heat and salt gradients are so adjust-
ed as to make a direct and an oscillating instability both close to marginally
stable. The idea is to study the mechanism by which competing instabilities
bring in complicated dynamical behavior in a situation which permits the use
of current analytical techniques.

I. A Mean Field Model

First, let us imagine a qualitative generic physical model of double
convection such as semi-convection (Moore and Spiegel, 1966). Imagine a blob
of fluid, volume V(t), which has average density j: ( t ), temperature T(t)
and salinity E (t), and which is moving vertically in a medium with
density PeCT) , temperature To(z), and salinity F- 6 (z) (Figure 1). We
make the following assumptions to strip the physics to its bare bones:

(Z (7j-z yjZ

FIGURE 1.

a) Variations of f', , To, , are small enough so that they can be
neglected except when their vertical derivatives appear explicitly.
So, . , To and Z, are "constant with a nonzero derivative".

b) ,P., To, 'E are not influenced by the parcel. We concentrate on
the kinematics of the parcel, but at the expense of two more equations
for changes in dtT/dz and dZdl caused by excess heat or salt
transport by the parcel (see "The History and Physics of Bouyancy in
Fluids", in this volume), we could get a fully coupled fifth order

system analogous to the modal truncation of Veronis (see Weiss in these
proceedings), coupling the mean field back to the representative blob.

c) The drag on the parcel is negligible.

d) The rate at which salt diffuses from the blob is much slower than the
heat diffusion rate, and so can be neglected (at least for a few
thermal diffusion times). This is a good approximation, since Ks/Kr
10 - 2 in brine.

The momentum is:

Now, by assumption (a),

-T P 0 - T ToT) + C cO-LZ)

The parcel loses heat by Newtonian cooling:

- -q(T-To(z)) (2)
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and keeps the initial salinity:

S- (t - 0) - constant.

It is convenient to work with a temperature perturbation 9 (t, z(t))
T(t) - To(z) and a salinity perturbation S(z(t)) = 2:0 (z).
From equation (2)

Rewriting the momentum equation (1) in terms of e and S, we get

Elimination of 1 gives a third order equation in time,

dT. - z. (3)

Imagine a parcel which, due to strong convection or nonBoussinesq effects has
vertically varying gradients of To and 1, , as in Figure 2. Then (5)
can, because the terms in z and i are nonlinear in Z, can produce complicated
dynamical behavior since, depending on the parcel position, both, either, or
neither direct or oscillating instability can be important, and the blob is
kicked between different dynamical regimes.

, 'II

IIT -I--

Fig. 2. Typical Mean Temperature Fig. 3. Stability diagram for
and salinity fields. ideal thermohaline convection

However, to look at the nature of the instabilities, we restrict ourselves
to a constant environment in which d6/h, and JS-/dz are independent of z.
Measure z from the level at which the salinity of our blob is equal to the
ambient salinity 2 (z). Then

and (3) is a homogeneous linear equation for z with eigenmodes z(t) b e
for which

A direct instability 0 a > 0, real) is found if

dr1. d Z,.z.

a- "> > . .
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An oscillating instability (Re A> 0, A complex) is found for

Az d T. d .d Z d E. J7 . C

In this case, in any situation in which the potential energy can be lowered

there is an instability which does it.

Physically, if dr. >0 a parcel displaced slowly downward radiatesdt

off its excess heat and falls due to its high salinity, causing "salt
fingers". If dZ./dz<o and d-/dz<o a blob displaced down feels a strong

upward buoyancy force due to the stable density gradient, augmented by the
buoyancy produced by the heat diffusing into the parcel, shooting it up faster
than it came down to produce an overstable oscillation.

Clearly, when there are very small gradients of To and Zo , both
instabilities are nearly marginal, and small inhomogeneities in the mean field
(perhaps produced by the convection itself) can bounce the parcel between
regimes of oscillating and direct instability. z(t) may at different times
reflect both of these behaviors. The influence of nonzero viscosity and salt
diffusion changes the particular gradients for which the instabilities
compete, but the qualitative behavior near the point of competition is much
the same.

2. Reconstitution

We will now aim to describe a co-dimensional two bifurcation in the
realistic thermohaline case, by suitable recombination of the equations found
by an amplitude expansion. The "reconstituted" equation, which gives a
complete description of the dynamics near the bifurcation, is a Van der
Pol-Duffing equation for the roll amplitude. It can be derived by a variety
of means, which do not expand all variables in powers of E and thus reduce
manipulation. One such technique is described in Knobloch and Proctor
(pre print).

We examine Boussinesq thermohaline convection in a box with stress-free
boundaries (Figure 4). The temperature and salinity are fixed on the top and
bottom, while their fluxes through the horizontal boundaries are zero. Define
a streamfunction I' with u - *.. , W - - t, . Nondimensionalize distances
with d, times with dl/., and temperatures and salinities by their difference

across the layer. Work with perturbations T and S from the conduction state.
Then

9t- tTTi T)4 16 ,S, Cr V* + J(wt, t)l

"'tT - Tt 4 J(T,'))

T V1 -+ ~ + (5)

The nondimensional parameters are
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C-= V/XT (the Prandtl number)

7; m I/lT (the Schmidt number)

_____ jr T 13ASd

d I -r (the Rayleigh numbers, with , i)

Our interest centers on values of RT and Rs within a small distance,

call it Oct£), the codimension bifurcation, that is, of the joint occurrence

of the two instabilities. There are two times in the problem an O( C )
frequency periodic orbit due to the oscillating instability and a slow 0( E )

frequency on which dissipation and forcing act. Thus, define

5* VCts r t

so Ft = C Fs + EF t

5'Z"0. -r, K~S "* =7~ -- I .- : - t,=0= ,

21V/o. 7" v' , ,

0 x

Fig. 4 The physical situation Fig. 5 Boundary condition on
the scaled equation

Rescale the variables to symmetrize the linear operator and take into

account the weak supercriticality
r =M •i -P'

T a

and define a state vector

The scaled equations are

v 4 Y me), - r ,P -r,4 C V' 4

Y" es + 3(Y±e) C"

(6)

4- r + +

I1
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We expand
+. +

r = r'o + ', , .

to get a sequence of linear problems, which determine the The
boundary conditions are (Figure 5)

0(0)

The analysis is pivoted on the linear operator:L4 - MO~ -.r,.p'
L Mo 4 V (7)

r. a X 0 _

At 0(l) or system (6) reduces to

) = 0

With the given boundary conditions, we can have solutions with . sin nicz.
However, when n q 1, the system will be violently unstable to a sin n X z
mode when the n > 1 mode is marginally stable, so we restrict ourselves to the
ansatz.

= )A .Cs ,.it) S ax .~,ii'Z 7

whence (8) yields a homogeneous linear system for Ao, Bo, CO which has a
solution only if

I; .'(

Then the eigenvector has

sir(xin (r( z)

St~ cos#a~in CT z)

rcosaxsin (n z)

=ZOk
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Adoint

For higher order in , we require a condition on the righthand side of
such that a solution exists. Therefore, we inspect the adjoint operator

L= -oN V

and require Rn be orthogonal to all solutions ? of LecP-o • The form of
;§. hints that any solution 49 with vertical wave number unequal to u or

horizontal wave number unequal to a will automatically be orthogonal to
Thus only one solution Cf is important:

s in ax sin P z

+ c? cosax sin z

cosax sin c z

with the inner product defined in the natural way. Explicitly
0 =<-sinaxsinl z> + cosaxsin 7[ z+ o___ ncosaxsin (10)

where < > is the spatial integral:

At this order the Jacobian terms and t1 time dependence of the slow
periodic orbit come in to produce an inhomogeneity on the righthand side, and
the system (6) can be written

L ti = H~
where

Hi A M.S]. C"k Sin0 . i r

Z A . A aO o

The resultant solvability condition Implies 
t

i vMl:- ' - g6 /o-',, , M.o1 - wv' r., -.

! 1
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which, combined with the zeroth order condition (9) implies

The second condition merely tells us that the only allowed O( C ) changes in
the Rayleigh numbers are perpendicular to the marginal stability boundary for
oscillations. This is because an 0( C ) movement away from the doubly
degenerate parameters along that boundary caused an oscillation with a
frequency 0( L"' ), which is not allowed by our scaling. In fact, since we
want growth and decay on a time scale O( L ), and only an oscillation on
time of 0( t ), we must choose the supercritically to be O0 ( " ), not
0( t ), so

MI = 1 = 0

We can now solve for , The most general solution is

~t + zj.AoZ (13)

where Alx is the coefficient of the 0( C ) contribution to the homogeneous

linear problem

0( C' )

One can compute from (6) the 0( E' ) inhomogeneity. Thus

LL H
where we can calculate with tedious algebra

""" 4 A,. - A'.. + ., Cu Ao lxsi
(: 3  - + Qt Ao) V1jr I'.Z

+ "M .e /%t, - (I+ i)A.,A. + CI-A S; I' L7,

+ ,__i A3 I sC'ax c.iz ir

=~ ~ ~ ~ ~* A. +- 11 -=., oi- ' t -- t -A.O,.)iriz 14_ (
I', A,)A.,

-T.O:- -_ " - .... A. .i.i.z c-~z i-z
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We have defined the symbol:

The solvability condition for the existence of i is

Q., A. + ZQ. 1 4 Ao -o 3 A. o
(14)

Note this is a conservative equation. To leading order, energy exchanging

effects on the slow time t. do not enter the equation, because Ao moves
around the orbits so much faster than it crosses them that the latter effect
is subjugated to the next order. This system is not structurally stable,
since the addition of infinitesimal dissipation destroys most of the periodic
orbits of (14), so we must go to next order to recover the dissipation and get
a true picture of the behavior near the bifurcation.

So, we compute It and use it back in (6) for the O( r' ) behavior. To
save space, its precise form will be omitted.

0( )

The equation to be solved is

We will only use the solvability condition, so we expand : 3, H3 , Z3 in

Fourier components. The only resonant term is sin 7E z sinax \,so we isolate

cosax

cosax

the coefficient of this term.( - slnaxsin it z

( 3 P"cosaxsn it z + nonresonant terms

Z 3 * : osaxsin rt-z)

Knowing , we may calculate the inhomogeneous term. We find

IA. A, - ji Ao, - -t k ".

H 3" A A-1 2- O-s o

~A + P I" A,|
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- A + A Z + A + Ao

4+ CL , [Z" At, t A.

VA ) , zY" are the coskaxsinl ic y components of Hm and Zm, which
can be deduced from our earlier expressions for Hm and Z m, m = 1,2.
After gruesome agony we deduce the solvability condition

o3 A,s., - 2 ,A - Le t = T. Q04 Ao+ ZIL.. Ao , (15) Qo.Ao,,
+ 2 .z._ A0s ,- (4.+ X.) Ao A,. v 003 Ao, (15)

Now, here we can take two tacks. First, we can find the condition on the
slow time dependence of Ao that results from insisting that A1 remain 0(l).
To do this, we multiply (15) by Aos and average over a large number of
periods of Ao . Let P(t*) be the period of the fast oscillation of Ao .
Then

SA. s1  %?4Qoz A. -~ A' A .A] A.,c~
P "(16)

= Q04o, Aosss Ao, d_ . 2'LQc -A o at% 4.Q ),.AAo
-ZQ0. AQO 0 OS

Integrate the left-hand side by parts to get some boundary terms, which if
A1 remains bounded are 0(1/n) and an integral of the 0 CE') solvability
condition. Thus, the left-hand side is 0( Vm). The right-hand side is
simplified by substituting the 0( C' ) solvability condition to get

A 0 S& A, )5  (17)

The equation (16) now reads

OC) ;1• ,, ~ ~iA.A- Q. 7

-O[%ZQz L £?ol o4.dAs - a-0(1 Rt.AkQd,

or, taking the limit n-L,

A -,r A.% A,, edf
, QQ01+-O

This equation gives a recipe for the slow effect of dissipation and forcing on



3 , - 53-

the orbit (and can be used to find the orbit which is asymptotically approached
for large t*).

An alternate way of using (15) is to use it in conjunction with the solva-
bility condition for A, , (14), to get an improved amplitude equation for the
total amplitude A - Ao + E A1 . While it is not essential for small C ,
the use of (18) to eliminate A osss from (14) puts the equation in a Van der
Pol-Duffing form and reduces the order of the equation to the minimum order
necessary to describe the small f physics. The time derivative is also
resummed by defining the total time derivative, in term of a time G - z t

We add (14) to E (15), using (17), to derive the "reconstituted" equation:

4 '1!2ALA,3.-&-.LAA>L.tQ)
Qor, .A .,

But

A' 4 A A;A, (A. +tA,) + o(')

and

A A, Oct)
so

4 .Q. °-"G.'O (0°.~ 7
Q( + .]jAt' ' (19)

All the dependence of A on the slow time can be incorporated in T .(19) is a
"post-asymptotic equation" insofar as it combines two orders of the equation,
and in fact contains both time scales of the problem. It is proposed that
for E not small, that (19) is the most robust description of the dynamics,
even though it now neglects corrections of O( t ) -., 0(l). The reason is that
it represents the normal form for the co-dimension two bifurcation of thermo-
haline convection, and is structurally stable to the addition of higher order
terms, in the sense that small perturbations make no qualitative changes in
the phase plane dynamics.
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NOTES SUBMITTED BY
CHRISTOPHER BRETHERTON
and FAUSTO CATTANEO

RECONSTITUTION METHOD FOR A SIMPLE EXAMPLE AND THE LONG
BUOYANCY WAVE

Edward A. Spiegel

Reconstitution Method for a Simple Example.

Let us consider the third order differential equation

Z + -oz_) - f z- bZ3  = (1)

Linear theory: z - al

+1 CV + 4 t +0

According to the values of the parameters, two types of instability occur for
the solution Z = o

- Direct instability or stationary bifurcation (pitchfork due to symmetry
2 *-Z )

0 4- + =o
- Overstability or Hopf bifurcation

ot3+ 42.+ 1+ 1

Now the interesting point is that we can choose the values of the parameters
such that the two types of instability occur almost simultaneously.

- Codimension two bifurcation

near the degenerate situation oL 0 the characteristic polynomial is
written as

such that we can expect that the dynamics near the bifurcation is then
governed by a second order differential equation whose linear part is written
obviously as

Z. C 0) +=

t°
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The problem we want to solve is to find the pertinent or asymptotically
relevant nonlinear terms of this second order differential equation.

Fortunately, normal form theory tells us what the generic terms are for
the interaction between two instabilities described by the characteristic
polynomial

41+ Ejft f 0

The answer is

+ +( -Z")z 4- (f + Z'-)z o (2)

Now we try to find the correct amplitude expansion method to derive (2) from
(1).

Scaling

z = t= ct

X + ex, --

0O (D o + CO0,+".

so at the first order we get

3 = (3)

This is the Duffing equation

At this order the absence of dissipative terms does not allow us to determine
the solutions. In other words this equation (Hamiltonian system) is not
structurally stable in the set of dissipative dynamical systems. In some
sense this equation is qualitatively false but for short enough times, it
describes qualitatively the behavior of solutions of (I) for small.IIj

At this stage one alternative is to pick solutions of this equation and
try to use the next order to determine their stability to higher order
effects. In fact, we are not interested in this alternative which allows us
only to determine the asymptotic solution. We want to find the correct or

generic amplitude equations. At the second order we get

4, 3, -36 X, - W,. - wo C -xj)i. (4)
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Reconstitution Procedure.

Step I. Remove the resonances using a solvability condition for any

initial condition; X0 is a given periodic orbit of the Duffing problem of
period P.

Now it is easy to verify that if we multiply (4) by Xo and integrate
over the period P the left-hand side vanishes Identically. This gives the
solvability condition. We get at this order

Step 2. In general the right-hand side of the second order equation (4)

contains higher derivative in Xo . We use the first order equation to
compute these derivatives

- X. = - 1 x'.

Then (4) becomes

+ 1K, - s 64. x, j(p a.6)] O>,(5)

Step 3. Let

where

)C XCL+t)
and form

C) + VC )
we get

+. E V ,) - C a - 36,) x1 + v" x b o (6)

This is the first order reconstitution of the asymptotic sequence of equation

for small amplitudes. This gives the same equation as the equation obtained
using the normal form procedure. The reconstitution method in the case of

thermohaline convection gives the same kind of amplitude equation

+ [X + A A (7)

land K are given by

and 5 depend on the Prandtl numbers. In the phase space the divergence of

the flow associated to (7) is given by

V~.+ where A

5 - V3 ~ ~



-57-

Solutions for small C using the averaging
nondissipative case (Duffing)

A + A. A!= 0
integral:

z +

Let " EA A)

F (- K- A

Let

and Ao = Ao (e j ) we get - tf( ). This equation gives the

selection of a given orbit due to the dissipation term

- ;_C1< A' %

Long Buoyancy Waves.

Motivation: Study long buoyancy waves in the two-dimensional thermohaline

convection with fixed flux boundary conditions.

Basic Idea: As we have seen in the previous lecture, the thermohaline
convection near the doubly degenerate situation with fixed temperature and
salinity boundary conditions is described in terms of a second order ordinary
differential equation for the most unstable mode (finite wave length): the
Van der Pol-Duffing equation obtained using the reconstitution amplitude

expansion method. In the fifth lecture we heard that fixed-flux boundary
conditions favor large scale motions. The idea here is to derive a second
order partial derivative equation using ordinary amplitude expansions,

describing a wave packet with small wave number, in the case of the thermo-
haline convection with fixed-flux boundary conditions. This equation will
describe long buoyancy waves. As we shall see, the waves produced by such an
equation are in some sense degenerate (lack of dissipation as in the Duffing
equation). The next lecture will be a derivation of a "structurally stable"
wave equation including dissipation using the reconstitution method.

Equation of the Two-Dimensional Thermaline Convection.

- c a Sr Sax~ 1 stream funtion equation

( e -v') e - ' = ('Y> O) temperature equation

( -- ') - 8. f , -) salinity equation

where R, S are the Rayleigh numbers
where or-T are the Prandtl numbers
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Boundary Conditions.

I flux fixed

q, stress free but not deformable boundaries

Scaling and Scaled Equations.

Ro oare the valuesR~ ?f heRayeih number which render the fluid

CX "i, = e t

We now rewrite the equation dropping the tildes

Y xrzz T 'Uf'f 'f'zz
Yt XC +c~ C ~ L X + Y'(q q,,x - X X

Czz,-t2~ 4, f)~ ~ I )+~ E

Now we expand 91 in power of E

4' +,4- Cq + +~L*

+ +~ +

The boundary conditions are

Ell 1 2 z =o q, =

Perturbation Expansion.

- th Order.

~~~) ('~f z.* where P(Z) is a given polynomial in Z
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19. 4cx4:

,= 5cg C)

f and g are arbitrary funtions to be determined.

- 1st Order.

9 -- 4, (x,4)

f1 , gl are arbitrary functions

1- 2nd Order.

The solvability condition arises at this order and gives a relation between
I R°' So

(Ro - SO ) = 5!

This determines a critical value for the total Rayleigh number (direct
instability). We have at this order a relation between f and g

We have for q'E, •

+x~ 'P 7. + (.I) + Q-~- X"( ) .

211 ~ (XA+) +. P2 ~){ CZ

*, Q1 i, 4Ci are given polynomial in Z and where f 2 and 92 are yet two
j more functions to be found.

- 3rd Order.

The compatability condition gives

- -I = 0

I Then we have

- ° (-=/S!, =. (7.) si

This gives the condition of the double degeneracy and we have

3 We can also compute D, 1,3 but these expressions will be useless to

compute the nonlinear wave equation for f obtained in getting the next order.

IO
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- 4th Order.

We get as a solvability condition the nonlinear wave equation

K wxr r, V Xfitxuit - ( v(f)~ ~ 0

where

and K, v are given numerical constants. This equation is a nonlinear wave

equation whose properties we are at present trying to understand.

Long Buoyancy Waves.

When the amplitude of f is infinitesimal the evolution equation may be
linearized and it has a solution of the form

f - w -ekx

This gives us

V = k ( -Kk')

so we have instability whenever

if the situation is only slightly unstable, we can once again make an
amplitude expansion.

Scaling and Unscaled Equations.

=2 .t is an arbitrary parameter

= ,SF~ '

We get

We expand again

F F0  &- # Fz .

- Oth Order.

XI'o + kC) F x.) c>
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jwith the solution

X XCA) C"4~ ( 4 Y' () kX

- 1st Order.

The solvability condition (orthogonally to sin and cos of the righthand

side) gives two coupled equations for X and Y.
We define

x= A u4 I

y= 13sI

and get for these variables

and

hence

= b/A"

where b is argbitrary. We get the equation for the amplitude

- (6/A-) - 4kA - vk A

This has the integral

E =f A v(4)

where

( 2k4 A- -vk AL )

and E is a constant. Solutions may be expressed in elliptic functions, but

it is instructive simply to look at plots of the amplitude and phase in the
following figure, here for b = .001, 1= -2 and k = 1.

Bound solutions of this system exist only for negatives E and those may be ex-
pressed in terms of elliptic functions. The waves found are in some sense

degenerate. Their amplitudes are arbitrary and determined by initial condi-

tion. This is due to the fact that the amplitude equations are nondissipative.
The next step will be (next lecture) to use the reconstitution method to get a
more generic wave equation.

I
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FIGURE 1. Amplitude and Phase as a Function of Time.
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LONG BUOYANCY WAVES AND SOLAR VARIABILITY; A GEOMETRICAL VIEW
OF DYNAMICAL SYSTEMS

Edward A. Spiegel

1. A Model for Stellar Variability.

One of the aims of this course has been to indicate a convective explan-
ation of the magnetic activity cycles of the sun and certain other stars. If
we look at a plot of mean annual sunspot number, we observe several important

features:

1) There is a definite time scale (one crudely would say periodicity) of
about 11 years -- the well-known solar cycle.

2) There is also erratic. nonperiodic behavior.
3) There is intermittency where the solar cycle is apparently turned off,

as exemplified by the Maunder minimum of the late 16th century when sun-
spot abundance was extremely low.

These features have usually been explained as an effect of the solar
dynamo and in some sense ultimately are. But we may imagine a model in which
the underlying physical mechanism in all of the phenomena of the activity
cycle occurs as an offshoot of the main process. We focus on the instability
of a thin layer beneath the convective zone. The model permits either
monotonic growth or growing oscillations (overstability) of perturbations to a
static state, and for low frequencies the nearness of these instabilities in
parameter space allows quite complicated dynamics. In the simplified set of
third-order equations for magnetoconvection with fixed-flux boundary
conditions we will consider, the asymptotic solutions for small but finite
perturbations are of the form of nonlinear waves propagating in the meridional
direction. The strict Boussinesq equations require an extra term in the heat
equation, but we consider a simplified version (Speigel and Weiss, 1981). The
period of these waves is determined by the rate at which the toroidal magnetic
field is forced down by penetrative convection from the overlying convective
zone, and can be matched to the 11-year solar cycle. At this level of
simplification we do not yet see any erratic behavior or intermittency, but
the extension of the model to triple convection shows the desired chaos.

Since the fixed-flux boundary condition favors large horizontal scales, we
will use the 2-D long buoyancy wave model which we developed in the preceding
lecture as out starting point.
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2. Long Buoyancy Waves.

Picking up where we left off, we recall the evolution equation for the
zeroth-order nondimensional temperature perturbation :

f - IL NY; -K G(f l .)KcX

where G is the ratio of magnetic to thermal diffusivity, / is the degree of
instability

-_( - s)
JAI

and 4 and V are numerical constants. For small amplitude this nonlinear wave
equation can be linearized and we obtain a solution of the form

C eIt caskx

with the dispersion relation

-~ ~ k VL ~.k)

We find that whenever

we have instability. If we consider only long waves of small amplitude,
i.e., /A only slightly greater than ,z4, we can again make an amplitude
expansion. Letting

where c4*/ and q, is an arbitrary parameter, and scaling the amplitude
and the time by g , we expand in powers of Sto obtain, after removing
resonances by a set of operations analogous to those used to obtain the
original f equation, the zeroth-order solution

Here the amplitude function /?() and the phase ai'M)satisfy the equations

where b is another arbitrary constant and the dot denotes differentiation with
respect to the slow timei i1 _"
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The amplitude equation has the first integral

I where

R . z k 3 4]
= - k '-~ gv/cR

and t is a constant. can be thought of as the total energy and V as the

potential -- we see a loose analogy to central force motion. Bound solutions
to this system exist only for negative e , in terms of elliptic functions.
The form of the solutions as a function of time is shown in Fig. 2.

FIGURE 2
We see a sort of "solar cycle" in the periodic behavior shown by the

amplitude function, while the phase diagram shows a latitude drift of magnetic
activity, a magnetic curtain traveling north-south. There is no indication of

any erratic behavior.

To obtain a larger class of phenomena we need to reconstitute the problem to

get a more generic co-dimension two equation analogous to the Landau equation
in ordinary Rayleigh-Benard convection (Childress and Spiegel, unpublished).

We return to the basic equations as scaled in Lecture #9:

19z 9XX ' 4 - 2 .9

I tzzz =r #- 4- a

LePt

x, 7-) z, r)(X )o z.Z(X ,T
. .. P ( ) 4 -

II~ ~ ~ ~ ~ P( 0 I I i
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We find, on introducing

thattht,.: Axo,? - i, - fxp ?' +f7  + E.+' '.

= - + ," ,

So

= -(r-x ) ?(z) /, PZ) 4# ,b' ) +OC')
where

with

5Tf,-/ ) g',,--) + 4 ' ) =  or

Thus, F and G can be worked out. Then we get

9%2% ( 6Fi sci), - p.. )"x?" , a- poP P." - PP")

+# ,£o-'p,. p" + 0Cc 1')

This leads to X Putting it all together, we find

- ",4< - £ Iv 3 *, + C,.c)Z.",, (°"<'i')x o

where

and 
' 9 = +

and the other quantities ( K, )V)) are numbers that depend only on the choice
of boundary conditions.
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These are the reconstituted wave equations and the waves they give have
I well-determined amplitude and velocity that vary slowly.

3. Some Speculation on Turbulence.

What I have been trying to do in these lectures is open up topics for
further research. The problems I have presented can be divided into three
parts. The first category is the fundamentals. There are still veins to be
tapped even at this level, as the warm-up problem attests. At the next level
we have the problems occupying the tillers of the field - how to extend the
standard calculations we have become familiar with. And next we have the
impossible dreams...

In the last category we might place the current interest in strange
attractors as a model for chaos. In the usual dynamical problems we are handed
a flow field U(X) and asked to compute the Lagrangian variable X (which we can
think of as a streakline) from a set of equations of the form

If divU is negative, a swarm of points contracts to zero volume and we have an
attractor. An example of this sort of behavior is the damped harmonic oscilla-
tor, where the dependent variables shrink to a fixed point. Other examples of
an attractor are a limit cycle, or in 4-D, a torus.

A worst possible definition of a strange attractor is an attractor that is
not a point, limit cycle, or torus. This does not help us much. A distin-
guishing characteristic of a strange attractor is the existence of erratic,
nonperiodic behavior. Consider a 3-D orbit in phase space. If we insert a
surface of section we get a pattern of points where the orbit intersects the
surface (Fig. 3). We call this a Poincrre map.

,.-surface of section

S intersection and orbit with
surface of section

orbi t

FIGURE 3

For a strange attractor we get an infinite set of points on our Poincare map,
with a distribution showing a self-similar structure on all scales -- a Cantor
set (Fig. 4).

In the real world a system governed by a strange attractor would thus be
highly sensitive to noise. Just as in the hydrogen atom, where ideally there
are an infinite number of discrete energy levels, but in real life we observe
a finite number of levels due to the inevitable environmental noise, the
number of leaves on the Poincare map of a strange attractor is dependent on
background noise. A strange attractor could be viewed as a sort of noise
amplifier. Nevertheless, we do not need noise to get chaos. Erratic behavior

44
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is part of the very nature of the strange attractor. This inherent chaos and
that introduced by the noisy real world may both be important in realizable
dynamical systems.

Some people have actually called the chaos exhibited by the strange
attractor turbulence. There are others who claim that the sort of truncations
that have been made on the governing equations to obtain systems with strange
attractors have nothing to do with real fluid mechanics. Then what is
turbulence?

The word turbulence has its root in either of the two Latin words
turbo-vortex, or turba-mob. Mob is an old abbreviation for mobile. A mob of
mobile vortices, if you will. Vorticity lies at the heart of turbulence. I
now offer some conjectures on the nature of turbulence and the possibly
related class of convection (thermohalence). These run as follows:

1) Solitary waves or objects occur in many real flows, though they are
a secondary phenomenon and hard to get our hands on. We found possible
solitary wave solutions in double convection; solitons can be shown to
run down vortex tubes, and, vorticity being at the heart of turbulence
we might expect solitary waves to be important in turbulence, too. In
convection thermals are solitary objects, so are oceanic gyres.

2) Solitary objects in an unstable situation which have "metaphorical
minds". On a fast time we see a nonlinear wave on coherent structure,
but on a slow time the amplitude and phase are governed by dynamical
systems (ODE's) of the form

4 4(A) ; A a vector

The attractor of this system is what I mean by the metaphorical mind.
The standard KdV and Schroedinger solitons are "mindless", while waves
whose attractors are fixed points are "simple-minded". The waves we
just studied already show interesting behavior that we might call
Zitterbewegung. Certainly, waves whose minds are strange would move
chaotically. These solitary waves are the elementary objects of this
vague turbulence model. An example arises when we study the reconsti-
tuted equation for triple convection with fixed flux.

3) In a fast collision our solitary objects collide more or less like soli-
tons (particles), but on a slow time the collisions are "telepathic" in
that the attractors (or metaphorical minds) interact. As a possible
example of what I mean by a solitary wave with a mind of its own, the
Great Red Spot of Jupiter presents itself. These are my reasonable con-
jectures: we enter the truly conjectural part of this lecture. If we
think of solitary waves as particles, we can write their orbits in the
usual way

X + t*

where Ir , on a long time scale, is governed by a system of equations
with strange attractor and may behave chaotically. The "old one" does
not need to play dice to know what such particles will do, but we have
to. If we have a large number of solitary waves we essentially have a
problem in statistical mechanics. Fast collisions are assumed elastic
while slow collisions are strongly telepathic. Unfortunately we do not
know the collision rules, but some clues ought to be calculable from the
buoyancy wave theory.
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The picture this suggests is an analog of kinetic theory in which the
particles can interact simply on a fast time and in which the representative
points on each attractor can disturb each other. In fact, one may simply
assume that all of the particles have identical minds so that we can visualize
all of their representative points on the same attractor. When two or more of
them interact, they conceivable distort the attractor itself. So that is the
kind of problem I want to study: a large number of representative points
moving on an attractor, but with the attractor itself influenced or even
shaped by the interactions. How can we write a theory that allows such
possibilities? Consider the system

The effect of the attractor is measured by V.U ; I see this as similar to a
gravitational attractor. Let

and think of gij as being like a gravitational potential. Similarly, think
of V)LU, the vorticity, as being like a magnetic field; and since lkis the
vector potential for vorticity, it is like the electromagnetic potential. So
motion around this attractor has a loose analogy to motions in an Ei +
gravitational field. This should not be taken literally, but the analogy
points to ways in which we can model the attractor. One description that has
been used to study motion in gravitational and electric fields is to introduce
Finsler geometry (Stephenson and Kilmister, 1953). That is what I do for the
dissipative dynamical system.

Suppose you consider a space with coordinates xi and a line element

such that

Lcx )kdxj) = k L(x', fx ')

Let . Then the geodesics given by *

oIg L 0xi~d

are the orbits of a Hamiltonian system with L as its Lagrangian.

Let

dc'd)( + 4 %ijdx dxi

where units are chosen suitable to make this nondimensional. The first part
of ds, uds, is the usual action. The second part corrects in some way for the
effect of the attractor. The second part corrects in some way for the effect
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of the attractor. The geodesics are given by

! + ] 0

where

34 J = I

and
CJ -k  .L(aU Dak)

= z X -

In other words, this geometry contains all the kinematic information of

the original system and it has some close correspondences. These will have to

be told in a future summer. I just want to close by noting that the model,

too, can be closed by expressing gij in terms of what the particles on the
attractor are doing. If there is a strange attractor for turbulence, I
imagine that it will be like that.

I cannot predict this yet, but it appears that the Hamiltonian system
develops caustics near where the original system has an attractor. So the

particles In the associated system spend a lot of time In the right place.
This opens up the possibility of a statistical mechanic for such systems when
they are embedded in a heat bath. I am sorry that my time is up and I cannot
tell you more about this, but you can perhaps see how it goes.

These are problems for one's dotage, perhaps. I now end the course, and

propose to begin my dotage.

NOTES SUBMITTED BY
SATORU HONDA and
BRUCE LONG

1*

1 a
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SEMINARS AND ABSTRACTS OF SEMINARS

PATTERN GENERATION AND TRANSITION TO TURBULENCE
IN THERMAL CONVECTION

Friedrich H. Busse

Among the fluid systems that exhibit a gradual onset of turbulence

convection in a layer heated from below with a large horizontal extent is of
special interest because of the approximate homogeneity and isotropy with
respect to two spatial dimensions. Unlike the onset of Taylor vortices in
unstable circular Couette flow or the onset of convection in small convection
boxes, the linear problem is highly degenerate. Because of this degeneracy
randomness is introduced when convection sets in without controlled initial
conditions. The convective instability acts as a selective amplifier of
microscopic noise present in the layer at the point when the critical value of
Rayleigh number is exceeded. Thus the theoretically predicted solution of two
dimensional rolls is realized only locally. The direction of rolls varies
randomly from one patch to another and a steady state is achieved only when
the influence of sidewalls finally becomes important throughout the
experimental Layer. In some experiments (Ahlers and Behringer, 1978) it is
found that for sufficiently large aspect ratio (and low Prandtl number P) a
truly steady state is never achieved. There does not seem to be available an
adequate theory to deal with patchiness and long time evolution of convective
patterns.

The theory of Schluter, Lortz and Busse (1965) is capable of describing
rather arbitrary patterns by considering solutions of the form

with the properties

jQ ,- - k c~ r.,

where X is the vertical unit vector. But in applying the theory the
assumption is made that I k - k.i > L' for ni where L is horizontal length
of the layer. The theory and its extensions (Busse, 1967) are capable of
predicting the stability regions of roll- and hexagon convection. Experiments
by Krishnamurti (1968) and Ahlers (1980) have confirmed the predictions
quantitatively.

In addition to the randomness introduced by the patchiness of convection
there is an intrinsic origin of chaotic behavior caused by higher bifurcations.
Bifurcations from the roll solution can be investigated by numerical analysis
and a survey of the stability boundaries in the R-P-e space can be found in a
recent review (Busse, 1978). Experimentally the stability boundaries have
been studied by using controlled initial conditions (Chen and Whitehead, 1968;
Busse snd Whitehead, 1971) in order to eliminate patchiness. The experimental
observations indicate that the theoretically identified mechanisms of insta-

bility continue to be operative outside the regime for which the theoretical
analysis is valid. Even after the rolls have been transformed into a three

dimensional pattern, say of bimodal convection,the oscillatory instability
occurs approximately as predicted by the theory. Instead of travelling waves
standing waves are now realized. Similarly, the transition of oscillatory
bimodal convection to spoke pattern convection is essentially the same as that
described by the knot-instability of rolls.
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In the case of a nonrotating plane layer as well as in the case of aIspherical convection layer a Ljapunow functional exists, the minima of which
correspond to stable steady solutions. The existence of the functional
insures the existence of at least one stable steady solution, although more

than one may exist at the same time. This latter situation occurs when stable
hexagon and roll patterns coexist in certain ranges of the Rayleigh number for
convection layers with deviations from the Boussinesq approximation.

But, in a layer rotating about a vertical axis a Ljapunow functional does
not exist. Indeed, as Kuppers & Lortz (1969) have shown, all steady solutions
become unstable when the Taylor number exceeds a critical value. The
interesting time dependence that results can be understood by the concept of
the statistical limit cycle (Busse, 1981). Because of the spatial variation
of the phase of the Kuppers-Lortz instability a patch structure of rolls
results. Rolls vary in their orientation from patch to patch, and owing to
the K-L instability patches propagate into each other. This patch interaction
problem can be treated in the two dimensional case. But even here numerical
solution seems to be required. Qualitatively the statistical limit cycle
concept is in agreement with the experimental observations (Busse and Heikes,

1980; Heikes and Busse, 1980).
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AN INTRODUCTION TO CHAOTIC MOTION AND STRANGE ATTRACTORS

John Guckenheimer

This lecture is an overview of the mathematical ideas known as dynamical
systems theory which appear to play a significant role in the transitions to

1

I =, . . . . il ._ __



- 74 -

chaotic motion for fluid flow and similar physical systems. The adjective
"significant" here should be interpreted in a very local sense in both space
and time: the perspective represents only my own views at the current time.
I make no pretense that these reflect a consensus, and some of the speculative
comments may well be in error. When there is a choice between general,
complex statements and simpler more restricted ones, I have opted for the
latter. Our intention is to emphasize the relationship of the mathematics and
the physics. More systematic accounts of the mathematics involved may be
found elsewhere.

There is a varied set of experiments with fluids which one would like to
interpret in terms of dynamical systems with low dimensional state spaces.
This is not an appropriate place to give an account of these, but the recent
volume edited by Swinney and Gollub (1981) provides a comprehensive survey for
some of these. The experiments are ones in which the fluid motion undergoes
transitions in its qualitative structure as a parameter is varied. These
transitions carry the fluid from a steady state of simple motion to a state
which is chaotic in time. In the typical experiment of Rayleigh-Benard

convection, Gollub and Benson (1980) indicate the range of transition
phenomena which are observed as a function of Rayleigh number. In all of the
experiments, the test for chaotic motion has been the presence of a continuous
portion of the power spectrum of a measured quantity.

The basic hypothesis which one would like to test is that the fluid transi-
tions can be faithfully modelled by bifurcations of systems of ordinary dif-
ferential equations with few variables. This hypothesis was put forward by
Ruelle and Takens (1971) as a contrast to older theories which pictured
turbulence as the superposition of many independent oscillatory modes. While
some of the predictions of the Ruelle-Takens theory have been substantiated,
it is still unclear whether low dimensional dynamical systems do provide a
good representation of chaotic fluid flow. This uncertainty is due in part to
the need for a better understanding of the low dimensional dynamical systems
themselves. While we have achieved a good understanding of some classes of
systems, we are still unable to characterize the kind of data we should expect
to see if the Ruelle-Takens'hypothesis is true. This lecture is devoted to a
discussion of this state of affairs.

1. The Standard Theory Axiom A Systems.

The most studied class of dynamical systems which possess chaotic trajec-
tories are those which satisfy Smale's Axiom A (Smale, 1967). This class
represents the archetype of chaotic behavior, and many properties have been
established for these systems. We shall recall some of these because they
provide a background that can be used in attempts to understand other physical
systems. We shall describe everything in terms of discrete time systems in
the interest of simplicity, noting that there is indeed a significant loss in
ignoring the role played by singular points of ccntinuous time systems.

Let x = (xl... , xn)eIR and let f:R.4JR"' generate a discrete dynamical
system: x(t + 1) = f(x(t)). In this section f will be assumed to have an
inverse f!--l. A setAc R is invariant for f if f(A ) = A . A hyperbolic
structure for the invariant set A consists of a continuous and invariant
direct sum decomposition of tangent vectors based in A into those which are
expanded and contracted by the variational mapping of f. More formally, therej .4

a
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is a continuous decomposition T M = Eu 9I A

and constants c > , o < A < 1 with the properties:

Df(E u) E ,) Pl(E:) (1)

E, I < C cX )VJ (2)

A closed invariant set A for f is an Axiom A attractor if (1)A has a
hyperbolic structure, (2)A has a neighborhood U such that fn(x) !A for
all x U1 (3) A has a dense orbit, and (4) periodic orbits of A are
dense. The first condition is the crucial one which distinguishes the uniform
hyperbolicity of Axiom A attractors. In their paper, Ruelle and Takens
defined a strange attractor to be one which satisfied Axiom A. Since then,
the term strange attractor has been used to describe a much wider class of
invariant sets.

Many properties of Axiom A systems have been proved. We mention here a few
which are of relevance to our considerations. Two attractors A , A for maps
f, and f2 are topologically equivalent if there is a homeomorphism
h:A,. At such that hfI = f2h. Colloquially, there is a change of
coordinates which identifies A, with A. in a way that preserves the dynamics.
An attractor A for a map f is structurally stable if there is a neighbor-
hood U of A such that all (C1 ) perturbations f of f have an attractor
in U which is topologically equivalent to A and = r().

Theorem (Smale, 1967) Axiom A attractors are structurally stable. In
particular, this theorem implies that the appearance of an Axiom A attractor
will be little affected by round off errors in a numerical computation.

The second result about Axiom A attractors which we mention involves the
structure of the trajectories they contain. We shall label trajectories by
the order in which they visit various sets Rj into which the attractor has
been partitioned. This process is called symbolic dynamics. Axiom A
attractors possess special partitions, called Markov partitions, which have
the following property, given a sequence [A, r (Aj (R,)), there is a
point with ff(x) c Ai if and only if f(Ai) n' Ai+ I 9 0) for all i. In
other words, the sequence of possible visits to the R. by a point of A is
determined entirely by noting which intersections of ihe form f(Rj) 0 RK
are nonempty. If one thinks of each R. as a "course-grained state" of the
system, then the map on the attractor behaves like a Markov chain for whicl
there is a transition matrix describing which states can follow a given
state. Theorem (Bowen, 1975) Axiom A attractors have finite Markov

partitions.

The final result we mention involves the statistical properties of the
attractor. This is a theorem which implies that most points in the attractor
have the same statistical properties.

Theorem (Bowen and Ruelle, 1975) let A be an Axiom A attractor and V a
neighborhood of A for which r) fJ U ) A and f( U ) ¢1) . Then there is a

--Ii|i lI! -
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measure " supported on A with the following property: for all L 1 functions
g and almost all x FU ,

I , " (c' = f9/A
A11

While Axiom A attractors possess these striking attributes, it has not been
easy to find them in physically defined systems. Indeed, the only examples
which are known have a relatively complex geometry which seems difficult to
realize in practice. Intuitively, finding a consistent grid of stable and
unstable directions requires nontrivial topology because the unstable direc-
tions must be stretched and then fit back upon themselves. It appears to be
much more common that a prospective field of unstable directions bends back
upon itself with the uniformity of the stretching violated in the bend. Coping
with this difficulty requires a consideration of systems which cannot have
Axiom A attractors but still appear chaotic.

2. One Dimensional Mappings:

There is an analog of the problem discussed at the end of the last section
which has been analyzed thoroughly and provides insight into the prevalence of
nonhyperbolic attractors. This is the question of iterating a real valued
function f:R-.R . The examples to keep in mind are quadratic f: f(x) =

ax(I - x). If o < a 4, then f maps the interval (o,l) into itself in a
noninvertible way. Extensive numerical calulations with these mappings and
similar ones indicate the existence of invariant sets which behave much like
Axiom A attractors. Though there are important differences with the Axiom A
theory, the structure of these mappings and their attractors is quite well
understood at this point.

Let us briefly recall the relevant results of this theory. We shall
consider families of mapping fa which satisfy the following conditions:

(1) fa: I -, I; I = [o,1]; a c [ao, al]

(2) f(o) = f(l) = o

(3) fa has single critical point c, a maximum which is nondegenerate and
independent of a.

(4) fa Is 1hree times differentiable and Sfa  W-- < 0 except
at c.

(5) fa, is onto while fa. satisfies fa (x) < x for all x 6 I.

The family fa(x) = ax(l-x), a C (o,4), satisfies these conditions as do C3

perturbations of the quadratic family after coordinate changes. Families that
satisfy (1) - (5) will be called full.

There is a great deal of rigidity in the structure of one dimensional
mappings which is reflected in properties that are universal among full
families. These include the order in which bifurcations producing new
periodic orbits appear and even metric properties involving the appearance of
chaotic behavior for the first time (Feigenbaum, 1977). Of importance here is
the following result.
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Theorem (Guckenheimer, 1979): f fa in a full family, then almost all

points of I have the same limit set A , (i.e., A is the set of limit points
of the sequences tfn(x)l for almost all x e I). There are three
possibilities for A

(1) A is a stable periodic orbit
(2) A is a Cantor set

(3) A is a finite union of intervals

Only the third case for A represents truly strange-attractor behavior.
The second case represents a limiting behavior which occurs when there are
increasingly fine collections of intervals which are permuted among themselves.
In the second case, points with nearby initial conditions do not typically
have trajectories which diverge from one another. In the third case, nearby
trajectories do diverge from one another and one has sensitivity to initial
conditions. Indeed, there is an 6 > o such that all pairs of trajectories
are separated by C . The final result which we state here is the starting
point for a possible resolution of the question we posed about the prevalence
of strange attractors.

Theorem (Jacobson, 1981) let fa be a full family.Denote by S the set of
a's for which the limit set A of most trajectories is a union of intervals.
Then S has positive Lebesque measure.

The proof of this result is quite technical, but it is worthwhile giving a
hint as to why the theorem is plausible. The argument is based on an itera-
tive construction of induced mappings. If f: I - I and Jc.I is a closed
subinterval, then the induced map fj : J - J is defined by fj(x) = fn(x)
if fn(x) J but fi(x) J for o < i < n. Roughly speaking, the construc-
tion of an induced mapping near the critical point of a map f with negative
Schwartzian derivative has a tendency to increase the magnitude of derivatives
at the expense of introducing jump discontinuities into the map. The basic
idea of the proof is to use the induced mappings as a means for detecting when
there is a stable periodic orbit.

When a map fa from a full family has a stable periodic orbit of period n,
then there is an interval containing the critical point c all of whose points
tend to the periodic orbit. Indeed, there is another point p which lies in an
unstable periodic orbit of period n, so that all of the points of the interval
(p,c) approach the stable periodic orbit. If p is the point with f(p) =
f(p), then the induced mapping on the interval (p,p) is continuous and is
given by fn restricted to (p, ). Thus we want to avoid situations in which
there is a continuous induced mapping.

As the parameter a varies, the function gn(a) = fa (c) tends to
oscillate wildly for large n. The situations to be avoided are ones for which

Ign(a) - clis very small. To investigate this possibility, one type of
estimate which is required places a lower bound on __ Wlat parameter values
which remain of interest, with n chosen by the construction of an induced
mapping. Ideally, we want gn(a) = fa (c) to move linearly across an
interval on which an induced mapping for the interval J is defined, so that
(gn(a2) - gn(al))/(a2-al) would be constant over the range of a's

4for which f" (c) = fj(c). This ideal cannot be realized, but the
departure from the ideal can be estimated and controlled.

Next, one makes a simple estimate for the quadratic function q( 0 + e
One wants to determine for which values of P, 1(o) falls on a point where j'l,'

I
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is small. Now 4(x)-2Ax, so lj'%)lIl in the interval [-2J",Z . On the other
hand, bk-tlo)-i when bdi*pjL "/ . When A is large, there will be a range of x for
which i('AI is large but 6 - to) is small since ct/ -. o as 4-.. Another much
harder set of estimates guarantees that this behavior for a quadratic function
carries over to the induced mappings fj near the critical point c.

The resonance conditions which one wants to avoid are situations in which
fj(c) falls into an interval for which If0 is smaller than some X > 1.
If tTIC.(4Cc)I > A at each step of our iteration, then fjn(c) grows exponen-
tially with n. The estimates carried out above for quadratic functions then
guarantee that the proportion of the remaining parameter set which leads to
resonances at step n decreases at an exponential rate. This means that the
measure of the parameter space which never leads to resonance will be a product
of the form 1 ( - -V) for some o<-, A>I . Since X is finite, the
infinite product is positive. This leads to the conclusion of Jacobson's
Theorem.

One would like to extend this argument of Jacobson to prove a similar
result about two dimensional invertible mappings. Quadratic mappings
lIke F,, (,) = (,-b x a j6-_)) were studied numerically by Henon (1976) and
appeared to have strange attractors. The map Fa b has a constant Jacobian
b, and yields a 1 dimensional quadratic mapping In the limit b -. o. It is
apparent that some of the structure of the singular limit b = o carries over
to b > o and that some of it does not. The question which we raise is whether
the presence of strange attractors for large sets of parameter values is one
of the properties that does persist for b > o. We believe that it does and
that the basic character of the "resonance" is similar in the two cases. The
issue is one that remains to be fully resolved. Indeed, there is still no
example of a smooth invertible mapping of Henon type which has been proved to
have a strange attractor.

3. Experimental Data.

The issues raised in the last two sections reveal a lack of mathematical
understanding about the models with few degrees of freedom which one would
like to use for the chaotic motions of fluid mechanics.

Uncertainty about the mathematical structures creates difficulty in
comparing experimental results with the models. Evidence is convincing that
the transition of a fluid to a state of chaotic motion follows closely the
lines predicted by bifurcations of low dimensional systems. It is less clear,
however, that the chaotic states which develop continue to be described
adequately by systems with few degrees of freedom.

In this section we shall discuss a few ideas about ways that one can deal
with chaotic data. Similar techniques have been discussed by Takens (1981)
and the Santa Cruz Dynamical Systems Group (Packard, et. al., 1980), but we
shall put our emphasis in a slightly different place.

In all cases, one makes the observation that a single time series almost
always provides enough information to faithfully reconstruct an attractor of a
system with a finite number of degrees of freedom. Let the given time series
be v(0- - ( c(tc)) , measuring one quantity of the system along a trajectory
x(t). For most choices of V , the map from the phase space T of the system
7.? -0 R, defined by (K (v(0, VN', .... , V((A-,I)) will embed ?
intoV" provided n is larger than twice the dimension of • This is an easy

I III I
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consequence of the Whitney Embedding Theorem. If the dynamics of a fluid
system are reducible to one with a finite number of degrees of freedom, then
this process should produce a representation of an experimental time series
which looks like an attractor in ' . Moreover, the appearances and
structure of this attractor should be unchanged by increasing n beyond a
certain no .

This view of a time series leads directly to a dimension which is called the

capacity (or Hausdorff dimension) of the corresponding attractor. One measures

the size of the attractor by counting the number of elements visited by the
time series v in a partition of 1 by a grid of uniform mesh size. The
capacity measures the rate of exponential growth in this number with
decreasing mesh size. If the growth rate stabilizes at a finite value with
increasing " , then there is a nonlinear correlation between successive
elements in the time series which allows one to predict the short-term behaviorv~x( , (( +, , ~x( k )from v(x(.N), v (-*s, ,-, vxC ...

If k grows too large, relative to the mesh size, then the sensitive dependence
to initial conditions within the attractor destroys this correlation. The
presence of noise within the system or an infinite dimensionality for tl':

attractor would be reflected in grid sizes for which the growth rate in the
number of partition elements visited is unbounded as n increases.

There is another perspective upon distinguishing strange attractors from

noise that has not been emphasized previously. In Axiom A attractors there is
a uniform spreading of trajectories from one another in forward and backwards
time. A typical pair of trajectories which start close to one another will
diverge from each other exponentially at characteristic rates given by
Liapounov exponents. The Liapounov exponents of a trajectory are defined to be
the characteristic rates of exponential growth for the variational equations
along the trajectory. Ruelle (1979) proves that these almost always exist.
Thus, we suggest that within a strange attractor the difference between two

time series which approximate each other for a number of successive terms

should be approximated by a sum of two exponential functions over a
substantially longer period of time. The extent to which the suggestion is
true may depend upon the constancy of the exponential spreading of trajectories
within the trajectory along the characteristic directions, but is manifestly

correct if one of the trajectories being compared is a hyperbolic periodic
orbit.

Within a system which contains noise, one expects the near approach of two
trajectories to occur in a way which is much more haphazard. In the idealiza-
tion of a system with superimposed Gaussian noise, the distances between
successive observations will be a function which is erratic on the scale of

the variance of the noise and does not resemble a sum of two exponentials.
There are many gradations between the extremes of a limit cycle with super-
imposed noise and an Axiom A attractor, so we cannot draw a sharp dichotomy.
Rather we suggest that matching trajectories which approach one another and

examining the statistics of their differences should allow one to measure the
effective predictability and noise level within the data, even if the
underlying deterministic dynamics are chaotic. The development of statistics
along these lines should help determine more conclusively whether strange
attractors of low dimensional systems do provide good models for chaotic fluid
motions.
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PERIOD DOUBLING AND THE TRANSITION TO CHAOS FOR SIMPLEST DYNAMICAL SYSTEM

Pierre Coullet

I. Introduction.

(ascadt of period doubling bifurcations occurs in many systems as the
precursor of chaotic behaviors.



* -81-

Some examples:

1) Experiment of Maurer and Libchaber (convection at small aspect ratio 4,
helium). Roughly they have observed the following route to turbulenct

(terporal chaos).
- I I I I 1 - 010 ... ... ...pR R R3 1 11 T ........ ''"

steady oscillation two I

convection fi frequencies period temporal
regimes doubling chaos

flf2 cascade
locking frequency

and quasiperiodicity

2) Various systemis of ordinary differential equations in dimensions greatcr
or equal to three (two for periodically driven systems).

Some examples:

- the normal form of the interaction between three instabilities with the
characteristic equation )+. 4 p A + P=o

- Lotka-Voiterta equations for three species

- nonlinear oscillators driven periodically

\.(I+ r.ts.O for various V

For example the rigid pendulum with periodic modulation of the frequency

6 1 + LO PClS i1 =

- noniineat coupLing between two oscillators. For example two Van Der Pot
oscillators

4(yV 4 P*x) + c.Lx -1L~,2

J) Various invertible mapping of the plane

+I - T (A j jC)

the most popular example - the Henon mapping

4, Loiilnvertble mappings of the interval

example: the logistic difference equation

I
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II. Period Doubling Bifurcation: A Generic Bifurcation For Periodic Orbits.

Let us consider the system of O.D.E.

t = F CX x = X,..x (I

Let W Ct a periodic orbit of (1) with period r
Pp

6 7(t F (yA1P' +T)

to study the stability of LP(t we can consider the variational equation

5J. 14 + ) (2)

this is a nonlinear system with periodic coefficients. Its linearization near
= 0 gives the information of the local stability of YPC

(3)

Now we can apply the floquet theory. Starting with an initial condition
J(o = % 3,..o) if we integrate (3) until t- T we get 3, .. .
we want to know the matrix C which map (oI to j Cr

C can be thought of as the period advanced mapping. To do that we start with

the initial condition

Sk = (0) a, 1 ) o .. 0
k

Let us integrate (3) on a period ' . We get
A k = (A k ,..

The matrix C is then given by

C~ (jL. .'~ )=Aa

The stability of P (linear stability) is given by the eigenvalues of C

(they are independent of the basis), called floquet multipliers. If C is a
contraction, that is, if all the elgenvalues of C are inside the unit circle

the orbit is locally stable. If some floquet multipliers cross the unit circle
the orbit loses its stability (bifurcation). In fact, one of the floquet

exponents of (3) is always equal to 1. This is due to the orbital invariance
(no dilatation or contraction for an initial perturbation along the orbit)
is a solution of (3) and an eigenvector of C with elgenvalue 1.

Typically, there exist three ways for a periodic orbit to lose its

stability.

A single multiplier crosses through 1.
A pair of complex conjugate multipliers cross the unit circle.
A single multiplier crosses through -1.
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The last case corresponds to the period doubling. This can be intuitively
understood considering C2 = C(2T,) which has a nontrivial multiplier equal
to one. Just before the bifurcation an initial perturbation converges to
generating a Moebius band

I

An alternative way to study the stability of a periodic orbit is to construct

let Y - x the coordinates on the
hyperplane E . Let us choose the origin of
the coordinate (x = 0) as the intersection of

Y andZ.

We define a map from E into in the following way:

Start with x o and integrate the equations ( I ) until we cut Z with
the same orientation of the velocity. Let us call x' the point of this
intersection. The mapping x'= Px- ) defined in this way admits x = 0 as
fixed point. Doing this we have reduced the problem of the stability of the
periodic orbit to those of the stability of x = 0 of the mapping I . Let us
rewrite 3 in the following way:

Ax + FCx) where A = I (4)

the eigenvalues of A are nothing else than the nontrivial floquet multiplier
previously defined (constructing the Poincare map E we have avoided the
problem of the existence of the trivial floquet multiplier associated to the
orbital invariance). Now assume that one of the floquet multipliers is cros-
sing the unit circle through-1 for o • By a linear change of coordinate,
when , 0, r can be written in the following way

Y -Y 4-GYZ (5a)

Z' s3Z 4- HtY,Z) (5b)

where Y represents the coordinate along the direction of the eigenvector
associated to the eigenvalue 1 and B is a linear contraction on the
complementary space (5) can be reduced to a one dimensional mapping by
computing the central manifold Z - V (Y) (see Fig. 1).

Let us consider the quadratic terms in (5b)

Z' BZ 4 H(Y,' + z(Y,Z) where +('1z' = + R(vz

i
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Let us split 14 in the following way I.(Y,'Z) 7 z(VZ)+ Q(YV such as (yj=o

7 =

FIGURE 1

Now we introduce the change of variable

Z 7- 4 4 x (Y) quadratic in Y

+- VY') +3 4- *TjYZ (YC) ~ + - + ..iY))

At the quadratic order we get

= *BL (N) + QY,)

We can cioose '4z such as

-Y V, 4(Y) ()
Since " 2,(-'Y= 14=(y)

the matrix -8 is always invertible since B has no elgenvalue equal to one.

In the new variables (5) write

y'= -y + F(v, N )) (6a)

Z."- S + "- N , 2 ii -( N, (6b)

So that if we consider (6b) at the quadratic order, Z = 0 is an invariant mani-

foi. kstabc at least near the origin) and the dynamic on this manifold can be

studied by (6a) setting Z = 0. Let us decompose F in the following way:

It, = Z y +. y 3  " 3 F, +- Y ' F, + Z.Z.Z
2 .,Z , + Fz~ +j +Z. , +Y F + Y L

,,Lp1ILi11& Z by V4'1 ) in this expansion (Z = 0) we get

'.(y)) = i 2.o7-... Y F,,' + Y3 .F3  + higher order terms

so that in a consistent way the problem is reduced to study the mapping

Y' -y +- Y + higher order terms (7)

wier o FCA + *. LL
2

* J0
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the vector is defined by 0,(Y:)

1the vector V, is given by 2" (0 -'

This procedure can be continued to compute the terms of order 4 and 5 in (7)
by eliminating the cubic term constant ink(6b), but in fact we need only the
cubic and quadratic terms in (7) to describe the behavior of the Poincare map
near v = 0.

In (7) the quadratic term oy= can be removed by the change of variable

Y'- Y + A * x c> W)

(7) becomes

-x + X 4 o(C") (8)

The cubic term in (7) cannot be removed: it is a resonant term. Now to study
the behavior of (8) near the bifurcation situation, we introduce a small
parameter v linearly related to r

' -(i+Y)x + Y A I I O )  (9)

For Yco the fixed point x - 0 is stable. For Y 0 it loses its stability
and we have a super or subcritical bifurcation (according to the sign of j )
giving rise to a periodic orbit of period 2.

I

- A

Supercritical case €oFGR

As we have already mentioned this kind of bifurcation is often observed to
occur in cascade. The most simple example of such a phenomenon arises in the
problem of iteration of one dimensional noninvertible map, e.g., x:= I-A.A

II

=.X

1l
Sueciia cas
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The physical interest of such maps is that they model quite well the behavior
of more realistic (invertible) maps of the plane which at their turn are good
models for Poincard maps of differential equations.

As an example, let us consider the Henon map

= I aX2~ .1-. -
ae

M. Henon has proposed this map to model some numerical Poincare maps of the
Lorenz equations gotten by Ibanez and Pomeau for values of R (Rayleigh number
in the Lorenz system) where they observe the period doubling cascade. In fact
this kind of map is in some sense an analytic realization of the Smale horse-
shoe map and a good qualitative model for Poincare maps of any differential
equations which exhibit period doubling bifurcation.

H.,t is an area contracting mapping; 4 is the rate of contraction
at each iteration; when r -ao the Henon map becomes the noninvertible
dimensional map

so that for & small enough the qualitative dynamics of the Henon map is well
approximated by those of this quadratic map.

III. Qualitative Dynamics of the One Dimensional Noninvertible Map.

In the following we shall restrict to a general* class of single bumped map.

Actually we shall consider as an example the simplest example, namely the
discrete logistic equation

" pX'-X)

The type of question we shall ask is what kind of dynamical behavior occurs
when increases?

1) Some definitions

An orbit is the collection of points

X.. = P( , M ; % c = X'. ...

Xo is called the initial point or initial condition, the practical way to
construct the sequence X1 , X2... is given on the following picture.

X1

X0 X, XZ FIGURE 3

*The class of map we consider is technically defined by the negativity of the

9chartsian derivative S; 'vf(&'..This implies, for example, that for each
value of m we have only one attractor.

I.
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A periodic orbit of period -n is an orbit consisting in v points such as

X,, . X .. X = X .

A fixed point is a point such as

Each point of a periodic orbit is called a periodic point. Any periodic
point of a periodic orbit is a fixed point of 4'.

- Linear stability:

Let us consider the case of a fixed point X. 4 >(xo) . If we start

with an initial condition X, 4 (x'). we get after one iteration X. +(Ex),

(Sx), , 00 ).

so that X. is stable if lP'(K)1 < I and unstable in the opposite case. The
same results apply for the stability of periodic orbits. A periodic orbit is

stable (resp. unstable) if its periodic points are stable (resp. unstable) by

respect to V')

" is stable if I P < i (W ) C'

It is easy to see that P r"( ou is independent of ' (derivative chain

rule).

- Bifurcations of one dimensional map of the interval:

Period doubling occurs for a periodic orbit of period " when F, 6&)=_i
This leads to periodic orbits of period Z" . The technical assumption, namely
the negativity of the Schartzian derivative, insures that all period doubling
bifurcations are supercritical.

- Saddle node occurs for a periodic orbit of period when . o (X&=

FIGURE 4

Saddle Node Bifurcation For Period Three Orbit

In this case after the bifurcation value we have the appearance of a pair
of periodic orbits of period , one stable the other unstable.

i. .k.
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2) Phenomenology

For the logistic equation, the interesting range of parameters is
Let us consider the two extreme situations:

- For Y < 4 almost all initial conditions eventually escape from (0,I).
Actually for these parameter values the mapping realizes an infinitely
contracted horseshoe map which obviously has no attractor but an invariant
Cantor set with infinitely many unstable periodic orbits of any period and
aperiodic ones. The construction of this Cantor set is given on the following
picture.

FIGURE 5

The coding of the point of the Cantor set can be done in such a way that

f(aoai;...) = ala 2... (shift)

Lacn sequences of ai with ai = 0,1 is an element of this set, so that
it contains infinitely many periodic orbits (ex.: period 3 io ,i t o ...
and aperiodic ones. This provides a very simple example of what is called
symbolic dynamics.

- For _%, X = 0 is the only periodic orbit off. So that the question is
what happens for values of ). between 0 and 4? What kind of bifurcations of
attractors do we observe?

a) The bifurcations are those described previously: saddle node and period
doubling. The only exception occurs for --i . We have a transcritical
uifurcation. 0 and X* exchange their stability (X* is the other root of X*
= )X*(l-X*) negative for I )

FIGURE 6

'rancritical Bifurcation In The Logistic Equation

b) The attractors are either periodic orbits which are stable for finite
range of t or strange attractors which occur for precise values of the

parameter. One of the properties of these maps is that, when we have a stablt
periodic orbit, the orbit issues from the critical point (abscissa of the
maximum 1/2 for the logistic map) converges to it. Otherwise speaking, the

I
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critical point is always in its basin of attraction, so that when the orbit of
the critical point contains an unstable periodic point we have no stable

periodic orbit. For this kind of value of strange attractors occur. As a
trivial example, let us consider the situation when the second iterate of the
critical point is 0.

This occurs for A = 4 when X = 0 is an unstable fixed point. So that for

this value there is no stable periodic orbit. Actually, we have a strange

attractor characterized by an invariant measure of probability continuously

associated to the lebesque measure. The dynamics exhibit the property of

seasitivity by respect to initial conditions.

Actually there exist infinitely many values of the parameter where this

occurs. Let us give a second example which will be useful in the following.

For some value of p& we have 4q* ( = X* if X* * 1/2 this
happens when this fixed point is unstable and we have again a strange

attractor.

FIGURE 7

A "Period" Two Strange Attractor

c) Regular regime and chaotic regime

The parameter irange (o < 'U ; L4 can be divided in two domains

ior Cjp,. We have a finite number of unstable periodic orbits which are the

lossils of the first period doubling cascade. U, Is defined as the

accumulation point of these cascades and the p. are the successive period
doubling bifurcation values. For p m we have an infinite number of

unstable periodic orbits. The attractors observed are either periodic orbits,
or strange attractors. J

u) 1ough structure of the chaotic regime

No

As we shall see we can define in the chaotic range of parameter a sequence 'U.

s, that for p) e ' - aLtractors have a rough periodicity 2".

For U.4 in the regular regime we have only periodic orbits whose

period is a mu'ltiple of 2" . For p,>IA >. when we have stable periodic

orbits they have a period which is necessarily a multiple of Z" For value,;

LA
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where strange attractors exist, the dynamics consist in a chaotic motion wl h
a gross period which is a multiple of 2"

As an example, let us consider f( St j

FIGURE 8

For p?,>)4>XTU)has two invariant nonconnected sets i 3 which exchange

themselves under

Now the point is that if we consider ( (that is the restriction
of f(4) on A for p < , , ) we can define u and J as the range of
parameter where ;(.,,A has two invariant sets w hich exchange
themselves under *N

This inductive construction can be continued to generate the sequence p .
This gives a rough information of what happens in the chaotic regime. The
sequence of " is called inverse cascade

e) Fine structure of the chaotic regime.

At this point it is more convenient to consider the quadratic map

X 0 1 X

As a model of this map we introduce the piece-wise linear map

)( = I - ' tX

The family of map X'= I - AIX realizes an interpolation between thc
piece-wise linear map and the quadratic one. Actually as C is different fr, 1
zero the fine structure of the chaotic regime of all these maps are qualita-
tively the same. The main property of the piece-wise linear map is that all
the periodic orbits are in principle calculable. Furthermore, as we shall see
in the chaotic regime, there is no stable periodic orbit so that in some sens?
the chaotic regime is fully chaotic. There exists no window of parameters
where stable periodic motions occur.

When I we have only one stable fixed point. Infinitely many unstable
periodic orbits appear by pairs when /" > I and give use to chaotic behaviors.
ForP-2 this transformation is known as the famous Baker transformation, so
that the chaotic regime is defined by (< . G _ .

As an example, let us consider the appearance of period 3 orbits "'(X)=X
The property used to do this calculation is that when a pair of periodic orbiLs
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appears the ciitical point (0 in our case) is a periodic point.

(V (o') o

Give the equation to be satisfied by 1A to give use to period 3 motions

(o) =1 f 1 J-r' kf. =0

this gives I -j

or

/~4=f .- ) 2 _ = (golden number)

Now it has been shown by Derrida, Gervois and Pomeau that the general

algorithm to locate the parameter ,A where it appears some pair of periodic

orbit of period N consists to expand A. in its own basis (autoexpansion) and

select the value of where this expansion has a finite length N-1.

k, C., - where . = o e, i only

The numuer between 1,2 which has a finite autoexpansion tends to be dense and
of zero measure on (1,2). Now the question is what happens when C is no

lon er zero?

rather than FIGURE 9

X.1
We can define t tt)as the domain of existence of an invariant set z for .

Let us draw an E-)A diagram for these periodic bands t

FIGURE 10

Now the point is that between )u(") jnA p'(") the map reproducesi

tue complete bifurcation story as the initial map. So that if we look at a

"periodic band" we have the following picture:

chaotic regime with the

rough period of the band.

period doubling

FIGURE 11

I.
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The chaotic regime inside any periodic band has the same structure as the
chaotic regime of the original map so that we have a nice self-similarity
structure for the chaotic regime.

IV. Formal Analogy Between the Transition to Chaos and Phase Transition.

let us consider here maps of the form x'. t- I J

1) Critical exponents for various quantities

- Period of cycle in the regular regime

.. I ,Ii
FIGURE 12

- Cross period of the dynamical behavior in the chaotic regime

.-,-C F
Jlf FIGURE 13

It appears that )"y (scaling law) and depends only on I This is a
conjecture done after numerical experiments (-.€s) for quadratic maps

- Measure of the chaotic region

ForA p..we have no chaotic region so that %m(c)=o(m(c) means measure or
length of the support of C ). For '.%,1.we have a strange attractor
consisting in 2" piece whose support is called C .

Numerical experiments suggest again that k is universal and depends only on

2) Self-similarity of the orbit at the transition point.
At the accumulation point of the period doubling cascade the orbit is

aperiodic and supported by a Cantor set which is nothing else than C. (c,
has been previously defined as the support of strange attractors occurring
at t'-z- )"
This Cantor set has remarkable self-similarity properties whose quantitative

feature seems again to be universal.

3) Renormalization group
We shall recall here briefly the construction of the renormalization

group which allows us to understand the origin of the critical exponents and
to compute them.

In fact, there are many differences between this renormalization group and
those used up to now in physics; here, we study deterministic dynamical
systems. We are interested in the variation with some parameter of such
quantities as the period of stable cycles. These variations are not
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continuous and arise for a discrete sequence of values of the parameter. This
will impose an irreductibly discrete version of the renormalization procedure.
Another fundamental differnece comes, as we shall show, from the existence of
two generators for this renormalization group. This will generate infinitely
many operations which would be necessary to describe the local scale
invariance of the Cantor set.

The idea of renormalization is that, for p=,pj, and via some simple trans-
formation, the relation between r, and x, is very similar to that between
x;,, and x. . This is suggested by the numerical evidence of a scale
invariance for the asymptotic orbit when ,:,w. (Cantor-like structure) and by
the evidence of a self-similar order for the iterates of a point on this
orbit. Among the transformations we shall have to do, two are similar to
those we know as classic renormalization schemes:

-we rename the variables Xz+. --, z, ;
-we do a scaling on these variables x; - .

Then there is one more transformation:

-We do a translation on variables x -, 'Y v+.

This leads to the study of the transformation

9X) V ) = (- X)c -_x t

This may be written as

f(.) = 'i - 0 f~ 0 ~
where ,, is the affine map ( ,Cx) = .

Then

where

and are determined by the conditions

(a) or -0>0 a a 9(4 =

(b) of (1 -II
(a) ensures the cancellation of the linear part of .C Ci) and
(b) implies (a) C .

';j: FIGURE 15

The two possible choices for vt correspond to two distinct operations, denoted
as 'k, and 9z and which are the generators of the renormalization group. The
possibility of finding fixed points for these transformations and the study ofI. their stability is crucial for the explanation of the criticality. This
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problem has been studied using truncated recursion formula and numerical
studies. Some exact results have been obtained recently. The conjecture, at
least when4+ is analytic, is then: there exists a unique fixed point T for
the operationP withfr"(o),i= 1,2 such that the spectrum of the linearized
operator /- Z* is inside the open unit disk except a unique positive
eigenvalue \ such that \,= X, > .

The picture is then the same as that in critical phenomena theory. Let o.
consider the stable manifold of e.g.gt. In the set of functions g, a
sufficiently general one parameter path will get a critical point if it
precisely cuts this manifold. Then, using usual techniques of renormalizatie
groups, we get a relation between the critical exponent Y for the period and
the eigenvalue X

There is no easy way to compute the other exponent, due to the very existence
of two generators for the renormalization group (the existence of a unique
operation would lead to an exponent O = A?).

Bifurcation and Chaos

Pierre Coullet

We have discussed in this lecture in a rather general way the problem of
competition between instabilities. Poincare's normal form theory has been
used to derive standard equations describing the interaction for the modes
near the marginal situation, As an example of such an equation, let us
mention the Landau equation A = pA- o(A which describes the
self-interaction of an unstable mode which possesses a symmetry reflexion. Ir
a similar way standard second order equations describe the competition between
two instabilities.

In general, the structure of the nonlinear terms involved in these
equations depends only on the linear problem in the marginal situation,. We
have focused our attention on a third order system which describes the
interaction between three instabilities. We suggest that whatever be the
coefficients of this equation (which depend on the starting physical problem)
we have in the space of central parameter chaotic situation as near as we have
of the marginal situation. The possible route leaCing to chaotic behavior hai
been discussed. This kind of interaction arises quite naturally in tri;le
convection problems. (see Ed Spiegel lecture). The result presented here
comes from a joint work with A. Arneodo, E. Spiegel, C. Tresser. The lecture
is based mainly on the following unpublished manuscript "Bifurcation and
Chaos" (A. Arneodo, et. al.)

I. Introduction.

In this paper, we are interested in physical systems described by a s, t of
variables which can be arranged in two distinct groups: order variables xi,

i - 1, ..., p, which are characterized by small linear growth rates at
strongly linearly damped variables yi, i = 1 ..., q (q,<-). We assume the
evolution equations in the form;

atX A x h( (Y)

Ge X11

L _____________
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where X = xx,..., Xp) and Y = (yl,...,yq); the parameter

(U.,(p....o ,Spf is such that, for LA= 0 (ji = 0 for all i) all th
eigenvalues of the matrix A, are located on the imaginary axis; the eigen-
values of Bo have finite negative real part. F and G 'A are purely non-
linear ana-Lytic functions which preserve X = Y ±40 as an equilibrium solution
of (1). If the respective linear scales of the variables X and Y are well
separated, the dynamics of the system on large time ranges are essen-
tially controlled by the order variables. In the asymptotic regime, the time
dependence the fast relaxing variables follows the variations of the weakly
uamped ones. This "slaved variables principle" (1) is closely related to the
central manifold theory (Carr, 1979). Essentially, forM. small enough the
dynamics desribed by (1) are contained in the p-dimensional system:

A0,A? X I. X g' (2)
where

Y -- 'll (). (3)

gives the dependence of the slaved variables upon the order variables.
Generally, the computation of 1FL(X) can be only achieved up to any
(arDitrarily high but) finite order, the order of truncation being chosen
according to the information one needs to extract from the problem at hand.

This dimensional reduction principle has been mostly used to describe

physical solutions where the increase of some external constraint gives rise
to dissipative structures (Haken, 1979). However, even in systems which

involve only a small nutaber of order variables, one may observe very
complicated dynamics and in particular chaotic behavior. Our attention will
be specially devoted to such interactions of a few order variables which can

benerate so called "strange attractors". Our purpose is closely related to the
theory of bifurcations of codimension one, two or three. (On this subject, see

e.g., Arnold, 1980 or Guckenheimer, 1981). This dynamical version of catas-
trophe theory is a promising tool to study complex physical situations where

several linear instabilities arise almost simultaneously (Holmes and Marsden,

L978 and Poincare, 1928).

This paper is organized as follows2

In section II, we use the apparatus of normal forms theory to derive

standard equations which describe the dynamics of the interacting order
variables. We make a survey of these equations up to interactions of three

order variable.

In section III, we briefly examine bifurcations of codimension one

(self-interactions), and two (interactions of two order variables).

In section IV, we suggest the relevance of typical scenarios for the
transition to chaos for some three instabilities problems (codimension three
uiturcations). In section IV, the connection between normal forms techniques
and amplitude expansion methods is discussed in the context of fluid dynamics.

It. Normal Forms For The Interaction of Order Variables.

11.1 Reduction to Normal Forms

1-oiucare's normal forms theory (Arnold, 1980 and Poincare, 1928) points out
what are the simplest equivalent forms of a given differential equation, near

IIII IIImii IIIi 1. .
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an equilibrium or a periodic solution. The reduction to these simplest torms
(or normal forms) is done using a change of variables which is defined as a
formal series in the deviation from the equilibrium or the periodic solution.
In this section, these techniques are used to derive normal forms for th
interaction of order variables. We consider the reduced system (2) rewritten
as:

"A = AX+F (X (4)

where, from now on, F, (X) stands for F, [X,H,. (X)]. The characteristic
equation for the solution X = 0 of (4) is given by:

det (A/ - -. = o. (5)

ForpAo, the zeros of the degree p characteristic polynomial:

e (A - .(6)

remain close to the imaginary axis. The structure of the nonlinear terms
involved in the normal forms will depend only on the particular form P (s).

To proceed we introduce two formal series:

NV (x) aAl (7)

where V') and 1kare homogeneous vectorial polynomials of degree n.
Furthermore, we formally define a new variable X' by:

X= Y' + C'), (8)

designed to verify:

A (9)

Inserting (8) into (4), we get:

t - A~'~ *)F-A('

where we use the notation:

With (9), (10) acquires the form:

A t ~ [t~(12)

At order n this yields the equation:

L V -X 1Z 0 )

where:

is a linear operator on the space of homogeneous vectorial polynomials; at

" -- I I II I II I I " I Ill
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each order (n) is a known function, depending on t (k) and R (k) for
k < n: " )A

•. X. (15)

If L is singular, i.e., if L1 .has some zero eigenvalue, R.
(n) is chwsen

in such a way that the right-hand side of (13) is orthogonal to the null space
of the adjoint operator to L, . This solvability condition for (13) selects
particular nonlinear terms (the resonant ones) from (4), which cannot be
removed by the change of variables (8). On the other hand, we can get rid of
the nonresonant terms, which produce only harmonic effects as illustrated in
Fig. 1.

FIGURE 1. Typical Reductions to Normal Forms

n(n) is then computed by solving (13). Indeed, there is some arbitrariness

in the choice of t and R since R can contain arbitrary nonresonant terms.

If L is not singular, R,1 can be chosen to be zero and we have, by the
change of variables defined by (8) and (9), formally linearized the system
(4). This is almost always the case when we deal with a hyperbolic equilibriuM
solution, i.e., when all,-i are different from zero. For the problem at
hand, we are not interested in such a choice; we rather want to keep from (4)
the relevant nonlinear terms needed to produce nontrivial dynamical behav'or
in the neighborhood of the hyperbolic equilibrium which is likely to be
unstable. These relevant terms are precisely those which are resonant for

To summarize, we have formally reduced the initial problem (4) of the
interaction of order variables to the desired normal form

A ( (16)

where now R (X) corresponds to the previous prescription.

11.2 Normal Forms Describing the Interaction of One, Two and Three Order
Variables

Table I gives access to the general expression of the normal forms
describing the interaction of order variables in turn of the sole knowledge of
the characteristic polynomial Pr(s). Note that some symmetry properties m:iy
induce simplifications in the above expressions. For example, if the system
which reduces to the normal form (l.a) is invariant under a reflection
symmetry, then the corresponding f(x) must be an odd function.

In this table we make use of the following notations:
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Y TABLE 1

Characteristic Truncated

Polynomial Normal Form

Codimension 1.

(a) s + -pxx + k~x2

(b) S2  + vis + W2jj + OL

Codimension 2.

(a) S2 + VS + Xx -(\)-k 2 X)x - (X-klx) x

(b)(S+\))(S 2+XS+W 2) x -(\)-kix)x+cxlIzI 2

z=I-j2X+io2)Z+c 2XZ

(C)( S2+XS+Wl)(S 2+\)S+W2) ~ ~ ~ iz+aizI+i 2 zI 2 z

(w, and w2 rationally z2 =(-.I\)+iR 2)Z2+(c21 JZ1
2+ C 22 IZ2 I 2Z

independent)

(d)(s+X)(s4-v) x1 -Xx1 +k11 X2+kl2XIX 2+kl3X 2

x2 =-vxj+k 2 1 2x+k22XIX 2+k2 3X22

Codimension 3.

(a)S3 + nS2 + vs + X 01

- (v-k2x-kx) x- (X-kjx) x

(b)(S 2+ \S+X) (s+n)2 xi (lk x -X ) l ( - l la 2X + X

2 -nX2+ax2+bxIX 2+CX22

over
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3TABLE 1 Continued

x =-(v-k 2.x)x-(X--klx)x+czljI z= --,n+il) Z+axz

(d) (S2+XS+Wi) (S2+VS I= (--ix+iQ I)z I+ (a 1Z, 1 2+

+ wj) (s 2 +n)s+Wi) a 1 2 J2 1 2 +OL 3 1 Z3I') z1

(WI, W2 and W3  z 2 =(-.IX+iiI 2 )z 2+(a 2 j IzI1 2 +

rationally independent) z2 2 1 Z2 12+ a2 3 Iz 3 12 ) Z2

Ot3 2 1 Z2 1 2+ a3 1Z3 12) Z3

(e) 2sX s+sw) s+l~~ - (X-klx) x+k 2 z, 2'+ k3 Z 21

I(w, and w. rationally ;I= (-Iv+iS21)z1+ajxzi
independent)

;= (--jn+iSQ2 )Z2+a 2 XZ2

(f) (S+X)(S+v) (S2+iS+W 2) = -(X-klxi)xi+ai, Z 2 -r~xlX 2+ClX',

X2= -(v-k 2x,)X2 +aL2 Z 2 2 +r2XIX2+C 2X'I

z=(-.[V9-i'Z+1XIZ+B2 X 2Z

(g) (S+X) (S+V) (s+nl) O2 2X+133

+a1 2X 2 X1 +ct3 lX3X1 +ct2 3X 2 '<3

6 2X2
X2 -vx2+a I XI 2 2 X2

2+63 3 3
I 1 2 X 2 X 1+a 3 IX 3 X j+a 2 3 X 2 X 3

2 2

1Y x +y 2 X2 X 1+Y(3 X3XI+*Y2 3 X2 X 3

J We thank J.Guckenheiner and E. Knobloch for pointing out some errors.
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- xl,x 2 ... denote the real order variables while zi=iei~i
refer to the complex ones.

- f,g,h,... are arbitrary functions whose lowest order terms do not
affect the linear problem.

- The symbols , , , v have to be identified to the small parameters
(,Mi) involved in (1).

- LS denote t-dependent finite frequencies. £- i stands for

11.3 Comments

Subsections II1. and 11.2 report only formal considerations. Difficulties
connected with small denominators arise if one tries to find an analytic
change of variables reducing a given differential system to its normal f.,rm
(Guckenheimer, 1981). However, one can always use polynomial changes of
variables to bring the system to a form which coincides with its normal form,
up to terms of arbitrarily high degree. Since we are mainly interested in the
behavior of the solution in the neighborhood of the origin and close to the
degenerate situation p = 0, it is likely that the first few terms of the
formal series give a good description of the dynamics. Such a truncation may
involve only the nonlinear terms of lowest order. As an illustration let Is
quote the case (l.a) in Table I with reflection symmetry: the equation which
describes correctly this self-interaction is the Landau equation:

X = - / 6X 3  (17)

when the constant parameter a is different from zero. Sometimes, higher order
terms are needed as, e.g., in the case (2.b) if one intends to take into
account the possibility of a tertiary instability corresponding to a
bifurcation to a quasiperiodic solution (Langford and Siam, 1979, Cuckenheimer,
1979, and Holmes, 1980)

In any case, the original system can be considered as a perturbation oL its
truncated normal form and one can wonder about the connection between the
dynamical behavior they display respectively (J. Guckenheimer, 1981). A
precise mathematical answer to this question is hopeless but this is of little
consequence for some practical purposes.

When complex variables are involved, one is faced (in nonresonnnt cases)
with equations for the amplitudes which are not coupled to the equiations for
the phases. Then, when a quasiperiodic behavior is predicted, its results
form a product of independent periodic behaviors. As a consequence the
well-known frequency locking phenomenon (looss and Joseph, 1980) is missing in
the description with truncated normal forms. Moreover, this lack of coupling
implies that the nontrivial aspects of the dynamics are described by a lower
dimensional system. For example, the truncated normal form associated withI
the tridimensional system (2.b) reads:

X - -x c be

w e(->/2 4- S c n a pa a (18)
where a,b,c are constant parameters. With z = pe i e , one gets a
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bidimensional system for x and

t =~~~~-v -t':, 'l ~ '.

+ R(19)

the equation for the phase; being given by

9 -z - t c'. . (20)

Of course, this reduction from three to two dimensions prevents the
truncated normal form to exhibit chaotic behavior.

These remarks give evidences that the predictions on an explicit system,
obtained using its truncated normal form, can be qualitatively false.
However, at least for small enough, one can reasonably expect minor
quantitative discrepancies between the actual dynamics and the predicted one
(Arnold, 1980; p. 297.)

III. Interactions of One or Two Order Variables.

Generally, the nontrivial aspects of a codimension p bifurcation problem
are described by a p dimensional differential system (Takens, 1974). Conse-
quently, the study of the self-interaction of one order variable reduces to
the study of a one dimensional real system, while for two interacting order
variables the reduced system is bi-dimensional.

III.1 Self Interaction of One Order Parameter: A Typical Example.

Let us consider the classical Hopf bifurcation ( Marsden and McCracken,
1976) whose truncated normal form is:

= -- " c.?- (21)

when the parameter a is different from zero. The standard analysis stands on
the one dimensional equation for the amplitude:

tz(. (22)
The nontrivial solution of (22) reads:

(23)

and gives the radius of the invariant circle issued from the bifurcation.

The above analysis fully uses the one dimensional character of Hopf
bifurcation. The following approach ignores this simplifying feature but
offers the advantage to generalize to codimension two problems. With the
scaling transformation ,

, -(24)

(21) becomes:

= - + e a - . ( 2 5 )

where the tildes have been omitted. In the limit 0 0, (25) yields:

(26)

II
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The phase portrait of this (linear) Hamiltonian system is shown in Fig. 2.

. (a)

0M
FIGURE 2. Illustrations of the variational principle:

a) in the case of Hopf bifurcation, the bifurcated orbit is

selected from a linear system;
b) on the contrary, in a typical codimension two bifurcation

(29), the selection is done on a nonlinear system.

The constants of motion of (26) are simply the radii of the invariant
circles. The condition of existence for e o of a given circle of radius p is
obtained by solving the following variational equation (Arnold, 1980, and
Guckenheimer, 1981):

'06 (27)

where D is the open disk of radius p andV, is the planar vector field

corresponding to (25). This leads to the equation:

Z Re = o (28)

which gives the same results as the one dimensional method.

111.2 Interactions of Two Order Variables: A Typical Example

In this subsection, we choose to discuss the codimension two problem (2.a)
in Table I, which will be of central use in the next section to suggest the
existence of chaotic behavior in some systems describing the interaction of
three order variables. The corresponding truncated normal form is:

4. NV i ac'l Y. 4 ) + = 0o) (29)

when the constants a and b are different from zero. With the following

scaling transformation (Guckenheimer, 1981)

-~ t - -(30)

(29) yields:

. e(v f ) + b4 ai o (31)

where the tildes have been omitted. In the limit e 0, (31) becomes
Hamiltonian with the Hamiltonian function:

2. + (32)
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FIGURE 3. Phase Portraits for the Hamiltonian System
i +%x + bx1 - 0 with b eO

Now let us consider a closed curve rE of (31) for 6 - 0, as parameterized
by its energy E. The condition of existence of rE for C-O is given by the
same variational principle as before

- Ai"V V o (33)
S

where DE is the area bounded by rE

C'iV r (V (+ 0-0 (34)

The results of computation can be visualized in the following ( , V) diagram

V

SL

_ _ _ H

FIGURE 4. ( ) diagram for the codimension two
bifurcation described by (29) with a > 0 and b<0.

In this diagram the lines correspond to codimension one bifurcations of
stationary or periodic solutions:

S indicates a stationary bifurcation;
H indicates a supercritical Hopf bifurcation;
SL indicates a saddle loop bifurcation.

A saddle loop bifurcation can be viewed as a collision between a stationary
solution and a periodic solution whose period tends to infinity.
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FIGURE 5
A Saddle Loop Bifurcation

Let us recall that the truncated normal form (29) applies to the general
case (2.a). If a central symmetry is imposed, (29) must be replaced by a "Van
der Pol-Duffing" equation

-k J, (Y + 3 ax') - (35)

The conservative limit of (35) is the Duffing equation

x" 4 xx . bx -" (36)

This situation is somewhat richer: the phase portraits of (36) are

qualitatively different according to the sign of b.

),>0 b<0 FIGURE 6 X<O b>O
Typical Phase Portraits for the Duffing Equation

IV. 1. Interactions of Three Order Variables.

In this subsection, we suggest how chaotic behavior can occur in the
typical co-dimension three bifurcation (3.a) in Table I, whose truncated
normal form is

+ (V', C~ +CK')x + X t(37)

where a, b, c, d are constant parameters. This equation has two equilibrium

solutions x = 0 and x ->/d. The corresponding characteristic equations are

S3  4. , $ vs + > -o (38)

for the null solution, and

S - +-)~i v - ~~ (39)

for the nontrivial solution.

We first study the bifurcations of the nontrivial solution. When ,o ,x >0
and - - (39) has only roots with negative real part so that

the nontrivial solution is asymptotically stable in this parameters' range.
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For) ( j- T) , a pair of complex conjugate roots crosses the Imaginary
axis and the nontrivial equilibrium becomes unstable. This Hopf bifurcation
gives rise to a periodic orbit. For X and Y small enough this periodic
solution stands near the unstable trivial solution and a "collision" between
these two solutions is likely to occur (Fig 5). This "collision" generates a
homoclinic orbit (saddle loop bifurcation for the periodic solution) which can
be used, in some cases to prove the existence of chaotic behavior. In
particular, if this collision arises when the trivial solution has the
following property:

> - > >0 (40)

where t and pt io are the roots of the characteristic equation (38), then
there exists chaotic behavior in the neighborhood of the unstable homoclinic
orbit (Shil'nikov, 1965). Figure 7 suggests the occurrence of a horseshoe map
(Smale, 1965) on a Poincare plane transverse to the homoclinic orbit. Such a
homoclinic orbit arises quite naturally in one-parameter families of

differential equations which exhibit a Hopf bifurcation close to another

FIGURE 7
The Horseshoe Map Viewed as the Composition of a Local Motion near the

Origin and a Nonlocal Motion along the Homoclinic Curve.

equilibrium point which satisfies the condition (40). A schematic evolution
involving a supercritical Hopf bifurcation is illustrated in Fig. 8 where the

shaded zone corresponds to a rather complicated sequence of events (bifurca-
tions): one can numerically observe cascades of period-doubling bifurcations,
intermittency phenomena, "strange attractors",...

FIGURE 8
From Hopf to Saddle Loop Bifurcation.

In the remainder of this section, we will suggest the existence of such an
homoclinic orbit for (37) with arbitrarily small X • For any fixed =
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and

A 11>> (41)

the slaved variables principle allows us to reduce (37) in an approximate way
to a bi-dimensional system.

The slaved variable x has a growth rate:

A- - - , (42)

so that the dispersion relation for the two other variables is given by:

S C 'S + ) :o (43)

where X = ht and Y/= X' / 2. For ) and small enough, the reduced
bi-dimensional system yields the truncated normal form:

W ( * 0- X) 4 X= 0, (44)

where a and b are functions of the parameters a, b, c, d involved in (37).

(44) is precisely the truncated normal form for the case (2.a) in Table I,
which has been discussed in the previous section. As already mentioned, there

exists, in the (X,> ) plane, a line SL starting from zero and which
corresponds to a saddle loop bifurcation for a periodic solution, itself
issued from a Hopf bifurcation of nontrivial equilibrium. This line SL
furnishes an approximation of a curve r in the plane 1- 1. of the original
(Xv, I ) parameters space; this curve r in turn corresponds to a saddle loop
bifurcation, but of somewhat more complicated nature since we now deal with
the full three-dimensional problem.

The above dimensional reduction method ensures the existence of r, , and

allows us to compute it approximately, only for I and v small enough. But it
is likely that does exist for a much wider parameter's range, up to values
such that the inequality (41) is no longer verified. This is confirmed by
numerical computations of r for explicit systems (a, b, c, d fixed) (see
subsection IV.2). It appears that the curve generally enters a region in the
( Xv ) diagram where the trivial solution possesses the desired property
(40). If one follows, one observes qualitative changes in the saddle loop
orbit as sketched in Fig. 9.

FIGURE 9. Evolution of the Homoclinic Orbit When One Moves Along r .

Let us remark that this analysis holds for A , , v as small as we want,

in such a way that chaotic behavior may occur as close as we want to the
neutral situation.

IV.2 Numerical Illustration

For the sake of simplicity we will consider the case a = b = c 0 0, d = -1

(Coullet, et. al., 1979). Then, the truncated normal form (37) reads:
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4 Vi+ V + I X X a (45)

Fig. 10 visualizes analytical and numerical results on a X x,,) diagram
( v fixed).

S

S

FIGURE 10. S corresponds to a stationary bifurcation, H to a Hopf bifurcation
for the nontrivial equilibrium, r to a saddle loop bifurcation and condition
(40) is satisfied in the shaded area. These results are obtained with the full
system (37). SL is an approximation to r derived from the reduced system (44).

Under condition (41), (45) reduces to the bi-dimensional system

+ V +ct a-) Xi - -L - 0(46)

Fig. 11 reports direct numerical simulations performed on (45). Keeping
and fixed, we vary X in the negative half plane. We observe the following
sequence of bifurcations: the Hopf bifurcation of the nontrivial equilibrium
gives rise to a stable periodic orbit. Later on, this orbit loses its
stability and a cascade of period doubling bifurcations seems to lead to
chaotic behavior. As soon as such a complicated dynamic sets up, there is no
more hope to follow precisely the sequence of bifurcations.

Globally, this evolution, as viewed on a typical Poincare map, looks like a
transition from a Henon-like "strange attractor" (M. Henon, 1976) to a spiral
type "strange attractor" whose structure reflects precisely the geometry of
the homoclinic connections involved in this problem (A. Arneodo, et. al.,
1981, and Arneodo, et. al., 1981) (Fig. 12).

IV.3 Comments

The analysis presented in subsection IV.l applies to other systems. If one
considers the case (3.a) in Table I, when the equations are invariant under a
central symmetry, the preceding method allows us to predict orbits as sketched
in Fig. 13.

A simple differential model (Moore and Spiegel, 1966) of thermohaline
convections (Turner, 1973) exhibits chaotic behavior interpretable in such a
way.I
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FIGURE 11. (a), (b), (c), (d), (e) represent attractors of system (37)
obtained by direct simulations when increasing the parameter A
For a still larger value of X one gets the unstable

homoclinic orbit depicted in (f).

/ 4.

FIGURE 12. The Poincar6 maps (a) and (b) correspond to Fig. 11 (d) and
(e) respectively. The full double spiral (c) can only be obtained
with a system invariant under a central symmetry. In all cases we
have chosen x = cte as typical Poincar4 plane.

(a) (a)

(b) (b

FIGURE 13. (a) and (b) represent two typical three-dimensional saddle
loop connections for the case (3.a) with central symmetry. Their
respective two-dimensional versions are shown in (a') and (b').
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It is also interesting to consider the case (3.b) with axial symmetry.

Here, one can suggest the existence, for some arbitrarily small A, g,j , of a
pair of homoclinic orbits on Fig. 14. If these orbits are unstable, one is

(a) (a)

FIGURE 14. (a) represents a pair of homoclinic orbits
for the case (3.b) with axial symmetry. (a') is the
corresponding two-dimensional saddle loop.

iikely to observe chaotic behavior of the Lorenz type (Lorenz, 1963, and
Guckeneimer, 1976). On the contrary, if these homoclinic orbits are stable,
a cascade of instabilities precedes the occurrence of chaos (Arneodo, et. al.,
1981).

Other scenarios for the transition to chaos can be encountered near
desenerate singularities. For example, in the case (2.b) in Table I one can

bet tori whose destruction leads to chaotic behavior (Langford, 1979 and
GucKen,.eimer, 1979). Let us also mention the cascade of period doubling
bifurcations for tori which is obtained with the truncated normal form
corcespoiding to case (3.f) kA. Arneodo, et. al., in preparation).
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SLOWLY VARYI1G WAVES AND CONVECTION

Louis Howard

Systems of partial differential equations describing physically interesting
continuum phenomena not uncommonly have families of plane-wave solutions.
There are perhaps three main types - 'pulses', 'transitions', and 'wave-
Lrains'. In each of these the solutions are expressible as functions of a
single variible, the 'phase' 0 , of the form 9-vt-e._ (or simply T--'x if the
coorditLate system is properly oriented). In the wave-train case, with which
we are i.ostiy concerned here, these functions are 2- -periodic functions
of 0 , so that T is the angular frequency and Ej the wave-number vector. In

tiLe other types we do not have periodic functions, but functions which tend to
lh..its at oo . Usually in these cases, and sometimes also for wave-trains,

it is more convenieut to replace the phase by the position relative to the
wave; C=tx-c,c-T/,3 is then the wave-speed). For pulses, the limits at too are
tite same; tor transitions, tey are different. To investigate the possibility
of such solutions, one introduces the assumption that the dependent variables
depend oniy on 0 (or 4 ) and ckecks first that the resulting system of
Lquations is consistent with this assumption, i.e., that the result is in fact
an autonowous system of ordinary differential equations; this will always be
the case if the original systen. of partial differential equations is invariant
un.er spatial and temporal translatilons. Then one must look to see if the
autonomous system, in fact, has one or more solutions of the required sort: a
21r -periodic solution for wave-trains, a homoclinic orbit solution for
pulses, or a heteroclinic orbit solution (joining two critical points) for
t.aus'tions. In particular cases there may be no such solutions, or solutions
o ,iy for a special value of the wave-speed c (or of - and .4 ) or families of
soluLions de,e ding on one or more parameters, In which case vr- and 0 would
:n general ue dependent on these paiameters.
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Examples of all three types appear in various aspects of the theory of
(nonlinear) water waves. Pulse solutions are of special interest in models of
nerve signal transmission and in many kinds of 'soliton' problems. The
transition type occurs, for instance, in models of the structure of shock
waves, explosion and flame front propagation, and the spread of an epidemic.
Wave-train solutions occur also in certain types of reaction-diffusion
systems, notably those involving oscillatory chemical reactions.

Sometimes the existence of plane-wave solutions can be demonstrated by

explicit construction in terms of formulas, but this is relatively rare,
especially in nonlinear problems. Other methods which have been successfully
used include: bifurcation methods, particularly applicable for weakly
nonlinear wave-trains or weak shocks; singular perturbation methods (e.g.,
the Flatto-Levinson theorem); topological methods, sometimes very powerful
for existence, even with strong nonlinearity, but usually not very
constructive; and numerical methods, good for quantitative purposes but
harder to make into proofs.

When a family of plane wave solutions is known, or may reasonably be
regarded as known because some relatively practical algorithm for its
construction is available, it may be put to use as a 'center of perturbation' -

the theory of slowly-varying waves attempts to do this. It seeks to find
approximations to more general solutions of the partial differential equations
which are "close" to plane waves. In the wave-train context one may think of
giving initial conditions which at each point are close to a particular member
of one of the family of plane waves, but the 'particular one' varies slowlyfrom point to point. One may reasonably expect that evolving from such
initial conditions, at least for a considerable time, would be a solution
which at any time is likewise locally close to certain members of the family

of plane waves, but that the particular ones would also vary slowly with time.
The goal then is to describe in simple and useful terms the slow temporal
evolution of the spatially slowly varying approximate plane wave solution.
These general ideas, which follow on from those behind the WKBJ method for
linear problems, have been developed and applied by numerous authors, for
instance Whitham and Benney: Whitham's book, "Linear and Nonlinear Waves", is
a very good general reference especially for problems involving conservative
systems such as water waves. A fairly general theory of slowly varying waves
in the context of reaction-diffusion equations with oscillatory chemical
kinetics, perhaps typical of dissipative systems, has been given in a paper
"Slowly Varying Waves and Shock Structures in Reaction-Diffusion Equations" by
L. N. Howard and N. Kopell (1977). This paper also considers the more precise
mathematical formulation of such problems, and the present lecture was largely
devoted to a sketch of this general theory in the case of such chemical waves.

To give a more precise definition of slowly varying waves, one may

introduce the 'slow' space and time variables X-sxTst where the small
parameter C is the measure of 'slowness'. (The above is the scaling approp-
riate to chemical waves - in other problems the spatial and temporal scalings
might have different powers of £ .) Then, a slowly varying wave is a family
of (vector) functions (parameterized by F_ ) T ( , t-,e ) which has the
representation

where

I

il ll~mi i, , m
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(1) For each fixed XT and c (sufficiently small) Y(V T,) is a periodic
function of its first argument having least period 2 T

(2) ( , -), has an asymptotic expansion in j uniformly for the other
arguments in some compact set.

(3) If G(X,, is defined by fE( t,e)=G('(_,F,' then 9 has an asymp-
totic expansion in i. , similarly uniform.

(The second condition says that the fast variation of Y with L and t

comes only from the dependence of 9 on Y_ and t . The third condition
expresses the idea of local resemblance (for small f ) to a plane wave of
frequency G, and wave-number --(R , as one sees by expanding 0 in a Taylor

series about any particular point X , T .)
.0 0

Now in the case of reaction-diffusion systems with oscillatory kinetics -

which are described by equations of the form c, r(c)+ K71c , for the
concentration vector c, in which ; is such that the kinetic equations Ct= ;(c)
have a limit cycle solution - it turns out that there is a one-parameter family

of plane-wave solutions, apart from a rotation or translation of coordinates.
These may be parameterized by the squared magnitude of the wave number vector:

for each &' in a certain range there is a frequency C: H( 0  and a
'wave-form' J,i (9) (a 2Tr -periodic vector function) such that C rx' 674-ax)

is a plane-wave solution to the reaction-diffusion equations. [Note the
difference between this dissipative system and nonlinear water waves, where
there is a two parameter family. Wave number and amplitude parameters can be
independently prescribed, and the 'dispersion relation' has the form r=P(-,A)].

Hypothesizing the existence of a slowly-varying wave which is a solution

of the reaction-diffusion equations (i.e., a family parameterized by C of
functions Y(OejT,e) and G(NT,Cas described above, which give solutions), one
can show that the lowest order term 9*( ,T) in 9- GG%. must satisfy the
equation G, .H(G2 , and also Y~e ,x,):ye2,(e) (assuming a consistent normaliza-
tion of the zero of phase). Thus to a first approximation the temporal
evolution of a slowly varying solution is determined by solving the initial

value problem for the Hamilton-Jacobi equation Q=H(;&) , which can be
described quite completely and simply in terms of the characteristic curves

(here actually straight lines) for this problem.

This description may, however, break down after a certain time, for the

characteristics projected into the X,T space may well eventually intersect.
This is not just a weakness of the method of characteristics, but indicates

that the slow variation in space has, in certain places, become fast. The
usefulness of the slowly varying wave description can, however, be extended

beyond the time of intersection of characteristics by introducing the idea of
shocks. Provided the position of the shocks is known, the Hamilton-Jacobi
equation can still be used in the regions between them. But to find where the

shocks are, or how they move, something else must be added: an analog of the
Rankine-Hugoniot equations of gas-dynamics. This turns out to be simply

continuity of the phase function 0° (but not of its derivatives) across the
shock, together with the 'entropy condition' that characteristics should

converge on the shock, not diverge from it.

From the point of view of the large-scale description of the slowly

varying wave theory, the shocks appear to be infinitely thin layers across
which there are discontinuities in the local wave number and frequency, but

on a smaller scale they have the structure of transition zones. To determine
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Elis structure one must, in princIple, return to the full reaction-diffusion
equations, with the simplification, however, that to a first approximation the

shock may be regarded as plane and moving with a constant speed. Thus one
gets a mathematical problem, the 'ideal shock', which can still be formulated
in terms of ordinary differential equations. It turns out that the thickness
of the shock zone depends upon the 'strength' of the shock, and for weak
shocks, those with only a small jump in wave number across them, this
thickness becomes large. This suggests that an extension of the slowly
varying wave picture might be available which would include, not only the
regions between shocks, but also the structure of the shocks themselves so
long as they are weak. This turns out to be the case, at least to a first

approximation, and (in terms of the original unscaled variables and in one
space dimension) one obtains the equation

where the diffusivity K, , is determined from the full diffusivity matrix by
a somewhat complicated formula involving the properties of the plave wave
solutions. In general, it is a function of G (for details see the paper by
Howard and Kopell (1977). This equation should give a reasonable description
not only between shocks (where the Lapacian term is negligible) but right
through them so long as they are weak. The description essentially in terms
of a single phase function 9 , however, cannot be maintained for sufficiently
strong shocks.

Now convection, also a dissipative system, has an analog of the chemical

plane waves: the two dimensional roll solutions. They also form a one-
parameter family, apart from rotations and translations of coordinates, which
may be parameterized by the wave number (in the unstable range of the linear
theory). Since they do not propagate, the situation is somewhat different,
but the analogy seems close enough that one may expect that the same general

approach will be useful. It is true that the properties of the roll solutions
have mostly been studied by amplitude expansions near the neutral curve, but
effective numerical methods, relatively simple by contemporary standards, are
available to calculate them for larger amplitude. It seems reasonable to
regard the roll solutions as 'known', and try to use them as centers of

perturbation for a slowly varying wave theory which would be useful in
studying the temporal evolution of 'imperfect' patterns of convection. The
theory of Newell and Whitehead (1969) is a step in this direction, but is only

applicable near the critical Rayleigh number. This is because although there
are really two independent parameters, the 'slowness' parameter C and the
supercriticality R - Rc, for technical reasons Newell and Whitehead linked
them by considering R - Rc = 0( C 2) (so that f also measures the amplitude
of the convective rolls). This approach permits the properties of the rolls
to be brought in in the familiar way by amplitude expansions, but restricts
the results to the neighborhood of Rc. What I advocated in this lecture is
the separation of these two parameters: the general idea of slowly varying
waves depends only on the slowness parameter and not on the supercriticality.
Since the properties of the rolls can be effectively determined without the
assumption that R - Rc is small, it should be possible to develop a slowly
varying wave theory also applicable when R - Rc is not small, and in fact,
most experiments on pattern evolution are done under such circumstances.
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NONLINEAR OSCILLATIONS IN DOUBLY-DIFFUSIVE CONVECTION

Edgar Knobloch

Doubly-diffusive convection is characterized by a competition between a

destabilizing temperature gradient and a stabilizing effect due to a stable
solute gradient, rotation, or an imposed magnetic field. This competition has
several important consequences. First, subcritical finite amplitude steady
convection becomes possible. Second, if the stabilizing agent diffuses more
slowly than the temperature, convection can set in as growing oscillations.
Finally, the competition results in interesting and complicated dynamics
already at small amplitudes, and these are accessible to perturbation methods.

The problem of magnetoconvection is typical. The two-dimensional
Boussinesq problem with free boundaries, periodic in x, and an imposed
vertical magnetic field is described by the dimensionless equations (Weiss,
1977)

+> J($A,')= )"q +  '@

b, A 4.+ "7A

where U= / , =/, : *oT k'/K , G o

The boundary conditions are

- 1 = @ 2--A 0 o -

These are the least offensive boundary conditions; as a consequence the
eigenfunctions of the linearized problem (about the conductive state 4' = - A
= 0) are sines and cosines.

The linear stability theory is best summarized in terms of the normalized
quantities

': = P l') -9:'>, : , '+ x

If 4<1 , and % > %, , instability sets in as an oscillatory
mode at r = r(O) prior to a positive (unstable) eigenvalue passing through
zero at r = r(e) > r(O). In an amplitude-Rayleigh number diagram a branch
of oscillatory (steady) solutions bifurcates from r(o) (r(e)).

When q is close to qc, r(o) is close to r(e) and the oscillations
have a long period. In this regime the interaction of oscillatory and steady

convection can be studied analytically. The following method appears to be
the simplest. We define i<<i by the relation 1_ ,4,c. Then re) - r(o) -
O(e 2), and we write r - rc +* , where rc - (d-4 4)4-) and /A. o(l).
Since the frequency of the linear oscillations is O( c ), we define a slow
time C r e pt. Finite amplitude perturbation expansion gives to O( 2 ), the
representations

A 2(a /r)v " e I,('t0 o) st,/(..r - (4L (') (f)>) Si,, + j

2/ 1/ c- (-r, e c .i ,x/ s .x , ., a it Ct,) .T 'I +
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From the equations of motion it therefore follows that

Ga -a t - 1 I+ -a( + la)

EV - 6 + laExC + 0(64
)  (ib)

C C t(-C o6) + o(6 2) (ic)

C - - 4 - a - cae o(e*) (ld)

Ee/ -(4-0)Ce + LaaA o(fa). (le)

Here the prime denotes differentiation with respect to I , and L-- 41*/p
It follows that b(r) - aft,e(te3 f(t), where g = 0(1). We obtain an equation
for g( *r, ) to any required order by iteration:

_- - 4 0C0) C- C-6C + OW) _C.

Hence

This, and similar expressions for d and e are then substituted into (la),
resulting in an evolution equation for a( r e ) of the form

CL+- Ma .MJ = 6 F(a) + o(6"L, (2)
where

M r,(e'r /4-e,) ?Q4

-Do- + (-)d I'+a-+ C)
and C, D are known constants. For ee<4 , (2) is solved in terms of a one
parameter family of elliptic functions. In general, however, the energy of
the corresponding oscillations, E - M' .L changes on the
superslow time scale T 6V according to

E - T o F ( ,) + 0 ( ) ( 3 )

T11  P 1

where P is the period of the oscillations. Only for those values of the
modulus of the elliptic function satisfyinglEt/dr=o is the energy constant and
the oscillations periodic on the time scale T. This condition, evaluated in
terms of the zeroth order solution, gives a relation between the modulus and
the Rayleigh number A , and hence between the oscillation amplitude and/ .I
The amplitude-Rayleigh number diagrams corresponding to subcritical (rv(< 0 )
and supercritical ( ir >o ) steady convection are shown if Fig. 1; unstable
portions of the solution branches are indicated by broken lines. Details can
be found in Knobloch and Proctor (1981).

Since E-ci , (2) reduces to the normal form (Guckenheimer, 1981);
Guckenheimer and Knobloch, 1981).

m~~ r~~ 4- & + p06,' (4)

wheretA, (,o) are known coefficients, and o are the unfolding parameters
((-.o when q - qc). This is the Van der Pol-Duffing equation. The phase
portraits for the two cases ( IC) o ) as functions of P(, are shown in Fig.
2. The heavy line in the ok, plane corresponds to increasing r; Fig. 2 thus
shows the succession of phase portraits that occurs as r increases. In the
subcritical case the branch of oscillations ends on the unstable steady branch
with the oscillation period becoming infinite; in supercritical case it ends
on the steady branch via a subcritical Hopf bifurcation. Note, however, that
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in both cases heteroclinic limit cycles occur, and for these the condition (3)
formally breaks down.

The form of equation (4) depends only on the codimension of the
bifurcation (2, in the present case), the reflectional symmetry of the
underlying partial differential equations (and boundary conditions), and the
requirement that a = o remains a fixed point for all a . Identical dynamics
are therefore found in other doubly diffusive systems. The coefficients,
however, depend on the specifics of the problem; for example, in thermohaline
convection only M > 0 is possible. Equation (4) can also be obtained by doing
straightforward perturbation theory that yields

0((t = C.(T) 4 E 4,(Z) + .

and obtaining coupled Landau-type equations for the amplitudes ao, al...
and then reconstituting these equations to obtain an equation for a( r .
This method is described by Spiegel (1981).

When C is not infinitesimal, (2) can be written approximately as

T", _ a )+ = (5)

This equation is also known (Spiegel, 1981). In the present case it is

expected that it gives a good description of the qualitative aspects of larger
amplitude doubly-diffusive convection, particularly the period doubling
cascade and strange attractors found in fifth order models (DaCosta et. al.,
1981; Knobloch et. al., 1981; Knobloch and Weiss, 1981; Weiss, 1981).
Except for the large amplitude steady solutions, (5) is therefore a good model

for moderate amplitude oscillatory louble-diffusive convection.

In conclusion, we note that the present method can be applied to
co-dimension 3 (and higher) bifurcations; the corresponding amplitude
evolution equations will be of higher order, and will generically contain
strange attractors. In such cases these strange attractors are solutions of
the underlying partial differential equations. This is an exciting prospect.
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WHO IS TURBULENCE?

Melvin E. Stern

A general control theory is proposed (Stern, 1980) to select the realized
stationary state wherever the equations of motion are densely nonunique
(degenerate). For turbulent flow in a pipe the theory implies that the dis-
charge is an extremum. Quantitative results (Stern, 1979), such as Von
Karman's constant, emerge when this variational principle is combined with
inequalities pertaining to the mean field. The control theory is also applied
(Stern, 1979) to fully turbulent thermal convection, and a variational
principle is obtained which is also consistent with measurements.

Current work includes application of the variational principle and the
inequalities to double diffusive turbulence (Stern, 1981, in press) and to the
turbulent Ekman boundary layer (Stern, iii preparation).
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A NUMERICAL METHOD FOR SIMULATING ENVIRONMENTAL FLUID MECHANICS

Rory Thompson

There was first some mention of interests of possible use to the summer
fellows, before settling on the difficulties in numerically simulating flows
with a sharp interface (as is often caused by turbulent mixing), and a

possible cure.

An example was considered of a stratified lake under wind-stress. A
well-mixed surface layer moves downwind and piles up, hence pushing down the
pycnocline at the down-wind end of the lake. Therefore, a sharp, moving
pycnocline is an inherent feature of the problem. We consider now only the
advection of this front, neglecting any dissipation or turbulence. In this
case, the mean, variance, and extrema of the density are preserved in the
continuous problem, so should be in the simulation. It was shown that a grid
(Eulerian) scheme which preserves the mean and variance of the advected
quantity will exhibit a "Gibbs phenomenon", that is, as the pycnocline moves
down through the grid, the density behind the front must "overshoot". Hence,
a downward water-velocity at the base of the mixed layer causes the grid-layer
there to become lighter than those above' The resultant convection makes hash
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of the simulation. If one puts in a "convective adjustment" to simulate
"sub-gridscale" convection, the mixed layer will become continually lighter,
violating conservation of extrema.

The "Cloud-In-Cell" method is a Lagrangian scheme that uses extended
particles ("clouds") to carry the advected quantities (e.g., f ). It differs
from many Lagrangian schemes in using a grid to compute particle interactions.
Instead of searching over all other particles in handling each particle
[requiring 0(n) operations if there are n points], one need only go through
the list of particles once [0(n) operations] to form averages i on a
grid - that is, to form a field. From these averages, one forms fields for
the pressure, its gradients, and hence accelerations, etc. The velocity (and
any time-derivative) fields are evaluated [again in 0(n) operations] at the
particles, which are consequently moved.

In the lake, as the pycnocline moves across the grid, so do the particles,

so the Cloud-In-Cell method has no difficulty with sharp fronts. In fact, if
dp/dt = 0, then each individual particle preserves its original P, so
clearly 7p, Tq2, and extreme values are preserved, for sums over the par-
ticles! The grid field F will not have these conservations, though
experiment shows near-conservation. The field T is in a sense ficticious,
existing only for intercourse among the particles. One would hope the grid
field would go to the desired continuous field as the grid size shrinks
simultaneously with the particle number per grid box increasing, but I know of
no proof, nor even of any work on such a proof.

In summary, the Cloud-In-Cell technique exploits the ability of Lagrangian

particles to handle advection and the ability of a grid to easily handle
linear terms -- at the costs of complicated and expensive interaction between
the two systems.

CONVECTION AND MAGNETIC FIELDS IN STARS

Nigel 0. Weiss

The sun is the only star on which magnetic structures can be resolved in
detail and for which we have a record of magnetic activity extending over
several centuries. Recent observations have, however, confirmed the presence
of magnetic cycles in other stars with deep convective envelopes. These
observations also make it possible to explore the relationship between
magnetic activity and angular velocity of rotation in such stars. Solar
magnetic fields have a highly Intermittent structure: flux emerging from the
sun is confined to isolated tubes with strong magnetic fields and the magnetic
pressure within them approaches the thermal pressure of the ambient gas
(Parker, 1979). Model calculations, in which the induction equation

is solved numerically, have demonstrated how isolated flux tubes can be formed

by kinematic flux expulsion (e.g., Galloway and Weiss, 1981; Galloway andIProctor, 1981). Numerical experiments on nonlinear Boussinesq magneto-
convection (Galloway and Moore, 1979; Weiss, 1981) show that motion is
excluded from regions with strong fields so that the flux tubes are almost
stagnant. In a turbulent region one might expect magnetic flux to be
separated from the motion with fields confined to ephemeral flux ropes
(Meneguzzi, Frisch and Pouquet, 1981). In turbulent Boussinesq fluids tht!
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magnetic energy density is unlikely to be much greater than the kinetic energy
density of the motion: compressible flow is needed to explain the strong
fields at the surface of the sun.

In order to provide a model of the solar dynamo it is necessary to average
over the intermittent field structures. This could be done if there were a
separation of scales between the global magnetic field, the individual con-
vective eddies and the small-scale turbulence; unfortunately this does not
happen in the sun. Nevertheless, mean field dynamo models, with the induction
equation recast in the form

at 1ji. 6ki., DAx- *. k Z -

where i is a turbulent diffusivity and Ot = 6- k 6jk for isotropic
turbulence, do reproduce the overall behavior of the solar cycle (Parker,
1979). The crucial a -effect depends on nonmirror symmetric turbulence: <A
is proportional to the mean helicity <u9tjy>, generated by the Coriolis
force. More detailed models require a better physical picture of the dynamo
process. It seems likely that, owing to a combination of flux expulsion and
topological pumping, which can be represented by the velocity i , magnetic
flux is concentrated in a layer at the interface between stable and unstably
stratified regions. This layer can become unstable by magnetic buoyancy,
allowing flux tubes to escape to the surface and emerge as active regions
(e.g., Spiegel and Weiss, 1980).

X-ray observations of other stars like the sun indicate that they are
magnetically active and that their activity increases with the angular
velocity SI (Vaiana et. al., 1981). Measurements of Ca+ emission (Vaughan
et. al.,1981) confirm that the average field strength depends onfA.
Slowly rotating stars like the sun have similar magnetic cycles but rapid

rotators behave differently (Vaughan, 1980). Edgar Knobloch and I suggest the
following explanation for this transition. In relatively slowly rotating
stars the parameterflr.i (where U is an eddy turnover time) and the Coriolis
force produces helicity in large eddies at the base of the convective zone, so
favoring dynamo action as described above; in rapidly rotating stars QlC > ana
the pattern of convection is dominated by the Proudman-Taylor constraint,
leading to elongated cells with a strong reduction in helicity. The dynamo
ceases to operate but the residual field, maintained by differential rotation,
is still brought to the surface by magnetic buoyancy. Since the ohmic decay
time is long, the poloidal field can survive without a dynamo. During its
lifetime on the main sequence a star like the sun loses angular momentum owing
to magnetic braking and magnetic cycles appear at some critical value of £L
when dynamo action first becomes possible.
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A MEASUREMENT OF CONVECTION AT HIGH RAYLEIGH NUMBER

Douglas Gough

The sun is a body which possesses an intensely turbulent convective

envelope. Moreover, it is sufficiently close for precise measurements of the
convection zone to have been made. This is a report of a conclusion drawn
from these measurements.

Because the convecting region in the sun is compressible and deep, and is
not contained within prescribed boundaries, one cannot describe even the gross
properties of the motion in the simple terms appropriate to most Boussinesq
studies. The heat flux is provided by the thermonuclear reactions in the core
of the sun, and one can estimate a characteristic Rayleigh number to be about
1030 , evaluating diffusion coefficients at the midheight of the region.
One could define a characteristic Nusselt number in a similar way, but it
would not be of an- immediately obvious value since the boundaries of the
convectively unstable region would be in quite different places were
convection not to take place. Indeed, the radius of the sun itself would be
substantially greater than it is at present were a deity to prohibit the
flow. Nevertheless, any measure of the efficacy of convection under such
conditions is of considerable interest, especially, perhaps, because the
Prandtl number, which is typically about 10-7 , and the Rayleigh number are
well beyond the range of terrestrial laboratory experiments.

Before describing the details of the measurements I should say something
about the quantity that is measured. As in any laboratory experiment, the
true conditions are idealized somewhat in order to render the interpretation

of the observations tractable. The idealization of the solar laboratory is
embodied in a set of partial differential equations that describe the
evolution of a self-gravitating gaseous sphere. In its simplest form, which
is all I shall consider here, the differential system contains three
independent parameters: the initial abundances Y and Z of helium and heavy
elements, and a measure oc of the efficacy of convection. These parameters are
to be determined by calibrating the theoretical solar model against
observation.

The standard astronomical calibration is to adjust Y, Z and o to fit the
present solar radius and luminosity. This provides a singly infinite sequence

of acceptable models, which I label with Y. What is required now is an
additional datum to determine which model in the sequence best represents the
sun. This would fix Y, and hence K , and thus would measure the convection.

a"
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I choose as my label the parameter Y in preference to the others bucause
astronomers have prejudices concerning its value. These are based mainly on

studies of the spectra and evolution of stars and on cosmological considera-
tions. Indirectly the former suggests Y 0.25 and the latter sets a lower
limit to Y which is a little greater than 0.2, though I must hastily point out
that the premises upon which this deduction is based are not firmly estab-
lished.

Neutrinos produced in a side reaction in the sun's core have been measured
by Davis and his collaborators (1979). The result should determine the
central temperature of the sun, and should thus enable the solar calibration
to be completed. Unfortunately, that calibration yields Y < 0.2, which
contradicts astronomers' beliefs. Thus it has been customary to discount the
neutrino calibration, and to regard the disparity between theory with
plausible values of Y and the neutrino measurements as an unresolved puzzle.

I consider now two fluid dynamical calibrations of the model. Both are
seismological, and rely on comparing observed oscillation frequencies near
3 mHz with the eigenfrequencies of normal acoustic modes of the sequence of
models. The modes are characterized by their order n, which, roughly
speaking, is the number of spherical nodal surfaces in the radial velocity
eigenfunction, and the degree 1 and order m of the tesseral harmonic that
factors from the eigenfunction. The eigenfrequencies v are independent of
m. I shall consid-er two classes of modes: one has I > n and the other
n )) I.

Modes with I V n are almost horizontally propagating sound waves.
Because the sound speed increases with depth, sllghly downward propagating
waves are refracted back up. Upward propagating waves cannot pass through the
almost isothermal atmosphere if their frequency is less than Lamb's acoustical
cutoff frequency Vc (this corresponds to the minimum acoustic frequency in
the dispersion relation discussed by Spiegel in his lectures, and is about
5 mHz in the solar atmosphere) and so the waves are trapped in a waveguide
just beneath the surface of the sun. It is easy to demonstrate that modes
with io<V penetrate beyond the boundary layer at the top of the convection

zone into the adiabatically stratified interior, and that their frequencies
measure the entropy jump across that boundary layer. The dispersion relation
has been measured by Deubner et. al. (1979), who observed the spatial and
temporal variation of spectrum line shifts. Comparison of theory with
observation thus provides a direct calibration of the convective boundar,-
layer, and hence, via the evolution calculation, determines Y. The result Is
Y = 0.25 (Berthomieu et. al., 1980; Lubow et. al., 1980).

Modes with n > 1 propagate almost vertically. They penetrate right to
the center of the sun and so provide a more direct measure of conditions in
the interior. Their frequencies have been measured accurately by Grec et. al.
(1980) who succeeded in obtaining a long continuous record by observing the
sun from the South Pole. A least squares fit of the appropriate elgenfrequen-
cies of the sequence of solar models to the observations yields Y Z 0.25
(Christensen-Dalsgaard et. al., 1981), in agreement with the previous calibra-

tion, and so provides indirect confirmation of the value of o •

Though these preliminary results are in reasonable accord with

astronomers' beliefs, there are small systematic differences between the
theoretical eigenfrequencies and observation which may be difficult to explain
without additional data. Preliminary theoretical helioseismological studies

have revealed that modes with small 1 and n may provide the answer, but these
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modes have not yet been unambiguously identified by observation.
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SOME OBSERVATIONS OF TURBULENT STRUCTURES
IN LARGE SCALE FORCED CONVECTION

David Topham

Studies of the Arctic Ocean heat budget suggest that a large proportion of
the heat flux to atmosphere is transmitted through the relatively small
proportion of the surface area which is made up of open water and ice less
than 10 cm in thickness. These areas of open water may be more or less
permanent features caused by upwelling of sensible heat from below, known as
polynyas, or swiftly changing features such as leads. The former are
irregular openings ranging in extent from a few hundred meters to many
kilometers, while the latter tend to be linear features.

Several groups have mounted experiments to study the effect of such
surface anomalies on their surroundings, both in the atmosphere and in the
ocean. Typical conditions are atmospheric temperatures in the range -20 to
-40 0C with wind speeds up to 10 m/sec. There is thus a violent change in
surface conditions as the airflow passes from solid ice cover at close to
atmospheric temperature out over the water surface at about -1.80 C. Previous
investigations were limited to areas of open water with maximum fetches of 80m,
with many of the most detailed measurements confined to fetches of 20m or less.

The work briefly described here represents the combined efforts of three
groups: The Frozen Sea Research Group of the Institute of Ocean Sciences,
Sidney, B. C.; the Air-Sea Interaction Group of the Bedford Institute of
Oceanography and the Boundary Layer Meteorology Group of the Canadian Atmos-
pheric Environmental Service, Toronto. The aims were to measure the heat flux
from an area of open water several hundred meters in extent under conditions
of extreme temperature difference.

ai
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The site chosen for study was a small polynya situated off the northern
tip of Dundas Island, N. W. T., positioned as shown in Fig. 1., the point A
marking the open water. Dundas Island is situated on a relatively shallow
sill dividing two deeper channels, Wellington Channel to the east and Crozier
Strait to the west. Tidal flows over this shallow sill exceed i/m/sec. and
this is sufficient to cause mechanical removal of newly formed ice. In
addition, there are significant quantities of heat available in the water
column, the near surface (10 m depth) water temperatures showing fluctuation-
of about O.100 C, at tidal frequencies, with the lowest temperatures
approaching the freezing point. It is possible that the large increases in
water temperature which occur at the faster current conditions are caused by

an upwelling process as the flow over the sill increases in speed. The
combination of fast tidal currents and a supply of sensible heat are sufficient
to keep the area open throughout the winter on a regular basis.

The following measurements were made in an effort to deduce the heat
losses from the area and to provide both qualitative and quantitative
descriptions of the dominant processes.

(1) Local fluctuating quantities within the growing internal boundary

layer were measured using a 3-axis sonic anemometer mounted at 4 m
height. This instrument gives the three components of velocity and
the local temperature fluctuations. In addition, an array of 4 fast

response temperature sensors could be mounted to examine spacial
coherence in either the vertical or horizontal. The measurement of
the fluctuating component of vertical velocity together with the
temperature fluctuations enable the turbulent eddy flux at that
height to be estimated.

(2) Mean velocity and temperature profiles were measured, both upstream
and downstream with the intention of obtaining on overall turbulent
heat loss. In practice such an integral method can only be inter-
preted in situations which are approximately two-dimensional.

(3) The fog forming above the surface of the water served as a natural

flow tracer and photographs clearly revealed the large scale feature

of the flow patterns.

The measurements have yet to be analyzed in detail and the small sample
presented here is intended to give a qualitative picture of events. Fig. 2

shows the planview of the open water at a particular time; the details of tle
outline changed throughout the period of the experiment (6 weeks) but this
general shape was retained. The larger black dots mark observation sites an,!
the arrows denote wind direction for different measurement periods.

The shape is such that the overall flow pattern over and around the open
water depends strongly on wind speed and direction. For the sites between
points C and D and the indicated wind directions the flow was approximately
two-dimensional and Fig. 3 shows typical profiles of mean wind speed and
temperature. It is to be noted that most of the change from the surface
conditions takes place within 50 cms of the surface. The highest point on the
profile lay well within the internally developing boundary layer made visible
by the fog patterns. That this area contains considerable vertical activity
is shown by Fig. 4 which is a section of a time series of air temperature
measured simultaneously at four heights. The high degree of vertical
coherence suggests the passage of tall narrow elements past the measurement

point. The tendency for the signals to take on a rectified appearance at the
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j higher levels indicates that the elements are moving through a constant
temperature background, and indeed, the lowest temperatures correspond to that
of the unmodified air. The vertical velocity measurements made at the 4 meter
level confirm this picture of a layer of strong vertical interchange. These
showed vertical velocities exceeding 1 meter/sec for both upwelling and
downwelling flows. Thus the picture one obtains is of a thin layer within
which the transport of heat and momentum are accompanied by shearing action

and a much thicker layer in which heat is transported by long vertical plumes
but accompanied by little momentum transfer. Estimates of the Monin-Oboukhov
length yield a surface layer of the order of 1 meter and the overall picture
closely resembles an unstable atmospheric boundary layer. Fig. 5 illustrates
typical structures outlined by the fog plumes. Photographs taken from above
show the plumes to be aligned in linear features along the wind direction.
These were particularly evident to an observer standing on the downwind edge
when clear "open streets" could be seen across the whole width of the water.

Observation suggested that the plumes arose from the shear layer at spacings
roughly equal to the depth of the shear layer, but that later in their
development a particular plume would grow at the expense of its neighbors,
leaving an area 'drained' of activity, into which a new generation of plumes
would grow.

For winds aligned along the long axis of the polynya the overall flow
patterns became highly three-dimensional, the heat input inducing convergence
in the surrounding flow field. Fig. 6 shows the general flow features for
winds in such a direction. The convection dominated region containing the
largest plumes is now confined to a central region running along the wind axis
with thinner boundary layers growing in from the edges under the influence of
convergence induced by the main convective flows. At lower wind speeds the
heated flow separates from the ground at the downstream edge, allowing an

inflow at the base of the heated flow around all sides.

The three-dimensional aspects of the overall flow pattern induced by the

isolated surface discontinuity suggests that caution should be exercised in
deriving values of heat flux from standard formulas used in boundary layer

meteorology.

The continued existence of such an area of open water under extremes of

atmospheric conditions depends on a complex interaction of mechanical and
thermal processes. A dominant feature is ice removal by the strong currents
of the tidal flows. At slack tide a thin skin of ice several mm thick rapidly
forms over the surface. As the tidal flows increase, skin friction causes
this thin covering to be broken up and to collect in thick wedges against the
downstream edge. As the currents increase further the leading edge of this
consolidated soft ice is forced downward by the dynamic water pressure,
eventually breaking off from the main edge and being swept away downstream.

The warmer the air temperature the larger the proportion of fresh ice
removed, as the ice strength depends on its temperature. If there is an
appreciable increase in atmospheric temperature the surrounding ice weakens to
such an extent that the whole area of open water extends rapidly. Such a
general opening of the ice cover was observed during the course of the
experiment when the air temperature rose from close to the monthly average of
-300 C to -70 C over the course of about a week.

Conversely, cold temperatures result in less ice being removed with
consequent encroachment of the solid edges. If, however, conditions become so

extreme that a continous sheet of ice formed at slack tide gains enough

I I I I I 11m I . . .
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strength to persist over a complete tidal cycle, no free edges exist and ice
removal by bending and fracture is prevented. The ice thickness is then

determined by the thermal balance alone and once completely ice covered, such
an area may not reopen, even though the air temperature returns to its former

level or higher.
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HIGH RAYLEIGH NUMBER CONVECTION MODELLED AS A
TWO-FLUID SYSTEM, WITH APPLICATION TO CONVECTION

IN THE ATMOSPHERIC BOUNDARY LAYER

Benoit Cushman-Roisin

When the ground is heated by solar radiation or the sea surface is warmer
than the overlying air, thermal instability sets in and convection mixing
develops in the lower part of the atmosphere, forming the so-called atmo-
spheric boundary layer. This convective region is characterized by a very
high Rayleigh number. Moreover, it expands upward as long as the destabilizing
surface heat flux is present. Numerous observation (Lenschow, et. al., 1980)
reveal that: (i) the temperature is nearly homogeneous in the mixed layer
(adiabatic gradient) and rapidly increases in an inversion layer which caps
the convective region; (ii) the temperature variance is maximum at the
surface, decays by about two orders of magnitude through the mixed layer,
reaches a well-pronounced minimum somewhat below the inversion, and increases
again in the inversion zone; (iii) the vertical convective heat flux decays
linearly from its surface value, changes sign, reaches a minimum at the low
edge of the inversion, and decays to zero in the inversion; (iv) the
vertical-velocity variance and turbulent kinetic energy flux both exhibit a
bulge near mid-height and virtually vanish in the inversion; and (v) the rate
of dissipation is almost vertically uniform in the mixed layer and rapidly
drops to zero in the inversion.

Transfer of heat, momentum, and other passive scalar such as moisture from
the surface and throughout the overlying atmospheric bouindary layer is
accomplished to a large extent by discrete convective elements called thermals
(Lenschow and Stephens, 1980). Thermals can take the form of isolated volumes
of buoyant fluid or of an elongated plume, which may extend vertically over a
significant fraction of the mixed layer (Turner, 1973). Although other
convective elements exist (e.g., longitudinal rolls, dust devils, and
small-scale eddies) thermals are the dominant mode of turbulent mixing in this
highly convective system.

The journey of a typical thermal can be described as follows. The thermal
leaves the surface, where it has been formed, with a large temperature excess
(positive buoyancy). Under the action of gravity, it accelerates and rises
through the mixed layer. As it rises, it gradually mixes with the downward
return flow, and its buoyancy diminishes. The combined effects of friction
and mixing force the thermal to reach a level of maximum vertical velocity.
Beyond that level, the frictional force is greater than the buoyancy force,
and the thermal, although still buoyant, decelerates. Later and higher, the
thermal reaches the neutral level, where it is no longer buoyant. Because of
its non-zero vertical velocity it overshoots that equilibrium level by inertia
and starts to carry upward a temperature deficiency (negative buoyancy). In
this part of the mixed layer, the heat flux is downward and thus opposite to
the surface flux. Ultimately, as the temperature profile starts to curve, the
thermal's negative buoyancy Increases sharply, and its vertical velocity
decreases. The thermal comes to rest, marking the top of the inversion zone,
and begins a downward journey as a non-thermal or return flow.

This general description explains qualitatively the main features of the
convective boundary layer as described above. It seems, therefore, natural to
think of thermals and non-thermals (return flow) as two distinct fluids
migrating up and down, carrying different properties (temperature, moisture,
... ) and exchanging these properties by mixing. Such a two-fluid concept can
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indeed lead to a closed model capable of simulating the physics of thermals
and thus of reproducing the characteristics of the atmospheric boundary layer.

Let us denote by primes and double primes the properties of thermals and
nonthermals, respectively. If f represents the fraction of area occupied by
thermals at any level (assumed to be constant with height), the fraction of
area available to nonthermals is (1-f), and one may define:

- the mean vertical velocity: f= fw' + (l-f)w"

- the mean temperature: T - fT' + (l-f)T"

- the vertical velocity variance: Wrms = fw'2+ (l-f)w ''2

- the temperature variance: Trms = fT'1+ (l-f)T"'2

- the vertical convective heat flux: OT - fw'T' + (l-f)w"T" (no
conduction)

It can be shown easily from these simple relationships that:

Wrms !f(l-f) (w' - w") , Trms = f(--f) (T' - ")

(positive or negative)

and wT - wT + wrmsTrms (correlation coefficient equal to unity)

With these preliminaries, the governing equations can be written as
(Cushman-Roisin, 1981):

)t= - (WrmsTrms)

- (T + mTrms) = 0

D3mwrms 4 = a gTX - ..

and hold as long as horizontal variations and diffusion are negligible. The
coefficient m is a function of f only [m (l-2f)f-l/2(l-f)-l/2/2] and is
of the order of unity. The first equation is a result of continuity and
states that there is no mean vertical velocity. The second equation is the
mean temperature equation (after the subtraction of the adiabatic gradient)
and expresses the divergence of the vertical convective heat flux is the sole
mechanism able to change the mean temperature. The third equation is the
turbulent temperature equation. This diagnostic equation as well as the next
one results from the assumption that turbulent motions are at all times in
quasi-equilibrium with their environment. The last equation is the vertical
momentum balance after its mean has been subtracted. It states that thermals'
acceleration is due to a buoyancy force (a is the thermal expansion
coefficient) and a frictional force (D is a dimensionless dissipation
coefficient of order one); K is the von Karman constant, h the instantaneous
mixed-layer thickness, h - dh/dt the rate of entrainment, and w* =

(P.,oghQ)I/ 3 the vertical-velocity scale derived from the surface heat flux, Q.
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When the mixed layer is well-developed, its mean temperature is almost
vertically homogeneous and the inversion zone is thin. In that case, an
approximate analytical solution is:
wrs + 3/2 hwrms u. (1- ) +- -l - -)

Trms = Q[1 - 2 (1 - D) - ]/(wrms + mh -

T = T, + PzL) P h - mTrms,

where u. is a friction velocity characterizing the turbulence level near the
surface (u. << wo ) and T. +Pz is the initial linear temperature profile.
The rate of entrainment is given by

rh1i = (3 - 4D)Q ,

and the temperature jump across the inversion layer by
I - 20 1

AT- rh,3 -'40e

as long as u. < w* and h<4 w, . [Note that stability requires D < 0.5,
for A T > 0.]

Although this solution is implicit in wrms, it is not difficult to
convince oneself that the resulting profiles exhibit the dynamic features of
the atmospheric boundary layer. In particular, the level of maximum
vertical-velocity variance (wrls ) and of maximum turbulent kinetic energy
flux (1/2 w - mwrs ) is z - h/2, and the neutral level where thermals'
buoyancy is zero (Trms = is z = h/2(l-D), i.e., somewhere between h/2 and
h, since 0 < D < 0.5 .

Near the surface, in a layer of thickness of the order of the Monin-Obukhov
length [ = (u. /w, )3h], the solution is similar and follows the 1/3
power laws:

Trms - (1 + L- .L4%; ( VA --K "

W M s -M 1 + D .,

where I- z/ .

From the solution, one may also predict the inversion-layer thickness and
the vertical-velocity variance at the base of the inversion:

h Ri - 4  and w 2. w, R1-Y2.

where Ri is the Richardson number defined from the total instantaneous
buoyancy in the mixed layer (Ri - tghAT/w' ). In a study of
turbulence and entrainment within the interfacial zone bounding a mixed layer,
Long (1978) concluded the same expressions.

The numerous and excellent agreements between these results and
observations, laboratory experiments, and numerical investigations strongly
support the modelling by two interacting fluids as a theory of convective
turbulence. The present model, however, is limited to a specific type of
study, since it does not include molecular dissipation, lateral variations,
wind turbulence, and internal gravity waves.

II I I Il - i I I I •
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MEASUREMENTS OF LARGE SCALE FLOW IN A TURBULENT CONVECTING FLUID

Ruby Krishnamurti

I would like to tell you about some convection experiments that
L. N. Howard and I have started to further study the large scale flow which
was found to be spontaneously generated at certain high Rayleigh numbers
(Krishnamurti and Howard, 1981).

A schematic diagram of the apparatus is shown in Fig. 1. The convecting
fluid occupies the annular region between two concentric right circular
cylinders. The fluid is uniformly heated from below, cooled from above. In
this configuration, we observe tilted transient plumes, (Fig. 2) with a flow
in one direction around the cyclinder at the bottom and in the opposite
direction at the top.

The purpose of the present experiment is to measure azimuthal velocity-
component u and vertical velocity-component w and to see if the Reynolds
stress w (horizontally averaged) plays a significant role in balancing the
viscous stress of the horizontally averaged large scale flow, y

The procedure was to illuminate a cylindrical sheet of fluid (concentric
with the cylindrical walls) by rapidly rotating a pencil of light from a
1-watt laser. Tracer particles in the fluid scatter this light, some of which
is reflected from a conical mirror into the camera. The scheme is somewhat
like a cylindrical version of an all-sky camera. However, since a pencil of
light is used, a tracer particle is illuminated at known intervals, (each time
the beam comes around, until the particle leaves the region of study).
Usually, we rotated the beam eleven times for one photographic exposure, but
blocked off the light from entering the camera, on the ninth time. Thus we
would get on photograph 8 bright dots followed by a dark spot, followed by 2
bright dots. From this we could deduce speed as well as direction of motion
of the tracer particle. From each photograph, we were able to deduce on the
order of 1000 vectors.

.t
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One example of such a photograph is shown in Fig. 3. In this particular
example, there were two cells each occupying 1800 of the annulus. The
analysis shown below is for one of these cells. Enlarged versions of such
photos were used, and particle positions were digitized. Since, in this

method of photography the outer circle in Fig. 3 is at the top of the fluid
layer while the inner circle is near the bottom, the data was rectified by
mapping onto the x-z plane, where x is distance around the cylinder and z is
the vertical coordinate. Then an objective analysis was done to produce the
flow vectors in Fig. 4a. Analysis of this data gives various quantities such
as

(I) spectral density as a function of height z in the fluid

(ii) the horizontally averaged velocity u as a function of z

(iiI) the Reynolds stress uw.

An example of (ii) and (iii) is shown in Fig. 4b and 4c.
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BIFURCATIONS IN DOUBLE DIFFUSIVE CONVECTION

Nigel Weiss

Nonlinear convection can to some extent be modelled by truncated systems

of coupled ordinary differential equations. The truncation is, however,
dangerous and solutions of the model system have to be compared with solutions
of the full partial differential equations. The Lorenz (1963) equations
provide an obvious example: the bifurcation from the steady convecting
solution in the Lorenz system corresponds to a supercritical Hopf bifurcation
in the full problem, where strange behavior has not yet been found.

Fifth order models of double-diffusive convection can, however, provide an
understanding of the bifurcation structure when convection sets in via a Hopf

bifurcation when the Rayleigh number r = r(O), which precedes a simple bifur-
cation at r = r(e). Thermohaline convection, with an unstable thermal grad-

ient can be represented by the system put forward by Veronis (1965), whose
solutions are qualitatively similar to those for the full two-dimensional
problem (Veronis, 1968; Huppert and Moore, 1976) provided R is not too large.
The truncated system makes it possible to solve for finite amplitude steady

solutions explicitly and to investigate their stability. Periodic solutions
can be obtained numerically with sufficient accuracy. When convection sets in
as overstable oscillations at r(O), the steady solution branch bifurcates
from r(e) towards lower values of r and stable steady solutions exist for
r , rmin, where rmin < r(O)< r(e) (DaCosta, Knobloch and Weiss, 1981).

In simple cases the oscillatory branch terminates on the unstable portion of
the steady branch, where the period becomes infinite. (In the limit r(O)
r(e), solutions can be obtained analytically both for the full problem and
for the truncated system (Knobloch and Proctor, 1981)).
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A similar treatment can be applied to two-dimensional magnetoconvection
(Knobloch, DaCosta and Weiss, 1981). In this case the steady branch may have
zero, one or two turning points and behavior is correspondingly more compli-
cated, though consistent with solutions to the full problem (Weiss, 1981).
When the steady branch bifurcates from r(e) towards higher values of r there
may be a Hopf bifurcation from it to the oscillatory branch.

In both problems there can be further bifurcations from the oscillating
branch. In two-dimensional thermohaline convection Huppert and Moore found a
bifurcation from symmetrical to asymmetrical oscillations, followed by a
transition to aperiodic behavior. In the truncated model the bifurcation to
asymmetry is at first followed by a bifurcation back to symmetry, after which
the oscillatory branch is lost. For more extreme parameters there are further
period-doubling bifurcations, forming a Feigenbaum sequence, followed by an
inverse sequence of bifurcation at which the period is halved (Knobloch and
Weiss, 1981). For yet more extreme parameters the complete sequence is
followed briefly by a range in which solutions are aperiodic, suggesting that
a strange attractor has appeared (DaCosta et. al., 1981). Further work is
needed to determine the precise correspondence between the truncated model and
the full equations.
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MODAL TRUNCATIONS

Philip Marcus

Recently, there has been much interest in computing solutions to the non-
linear equations that govern thermal convection by using a Galerkin method in
which the velocity and temperature fields are represented by a finite number of
modes. In applying these truncated models to a convecting fluid in which the
Rayleigh number is large, such as the convection zone of a star (Marcus 1979,
1980; Latour et. al., 1976; Toomre et. al., 1976), we should be somewhat
cautious in taking too literally the exact pattern of the calculated velocity
and temperature fields. However, the gross features of the computed flow such
as the Nusselt number, kinetic energy spectrum, thermal variance spectrum,
mean temperature gradient, central temperature, and size of the boundary layers

1.J
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may indeed be quite accurate and it is worthwhile to determine how sensitive
these quantities are to the truncation.

In laboratory flows at more moderate Rayleigh numbers there have been
recent measurements of the bifurcations as the Rayleigh number is increased.
Gollub and Benson (1980) have carefully measured, as a function of Rayleigh
number, the transitions from steady state to periodic, to one or more states
of period doubling, quasiperiodicity or phase locking and then finally to non-
periodicity. In trying to explain these bifurcations theorists have performed
modal calculations. Unfortunately, the number of bifurcations and types of

bifurcations produced in the calculations strongly depend on how many modes
are retained in the truncation. For example, in a fluid with Prandtl number
of 10, Lorenz (1963) has found there is one inverted bifurcation that takes
the flow from a steady state to a strange attractor; whereas Curry (1978) for
the same Prandtl number found that with a more extensive 14-component model
the flow exhibits a normal bifurcation to periodic motion, followed by a
bifurcation to period doubling. The flow then bifurcates to an attracting
torus and finally changes to nonperiodic motion. Toomre, Gough and Spiegel
(1977) and Marcus (1978) found the surprising result that if the vertical
structure is finely resolved but only one Fourier mode is retained in the
horizontal (single-mode theory) then there are no bifurcations. The fluid
remains in a stable, steady-state regardless of Rayleigh number. For a Prandtl
number of unity and 39-mode truncation, McLaughlin and Martin (1975) found
four bifurcations in a fluid that initially was in a steady state with rolls
aligned along the y axis: the first transition to periodic flow, the second
to weakly nonperiodic motion, the third to a periodic state and the last to

nonperiodic motion. When they reduced the number of modes in their
calculation so that there were only three different wavelengths in the y
direction, they found that there was no final transition to nonperiodicity.
These modal conclusions all support Ruelle and Takens' (1971) assertion that
after at most 4 normal bifurcations the solutions must be nonperiodic in
time. However, it is important to know whether the bifurcations predicted by
the modal equations are inherent to the full nonlinear equations that govern
the convective motion or are a general property of the nonlinear, coupled
autonomous equations that govern the finite modes of the truncation. If the
truncated equations of motion do not have sufficient spatial resolution to
model the physically important processes that occur in a convection fluid,
then the bifurcations of the truncated equations may not be related in any

qualitative way to the actual transitions observed in the laboratory.

We examine the Galerkin (including single-mode and Lorenz-type) equations
for convection in a sphere to determine which physical processes are neglected
when the equations of motion are truncated too severely. We test our

conclusions by calculation solutions to the equations of motion for different
values of the Rayleigh number and for different values of the limit of the
horizontal spatial resolution. We show how the gross features of the flow,

such as the mean temperature gradient, central temperature, boundary-layer
thickness, kinetic energy and temperature variance spectra, and energy

production rates are affected by truncation in the horizontal direction. We
find that the transitions from steady-state to periodic, and then to aperiodic

convection depend not only on Rayleigh number but also very strongly on the
horizontal resolution of the calculation. All of our models are well resolved
in the vertical direction, so the transitions do not appear to be due to
poorly resolved boundary layers. For a spherical Rayleigh number 100 times
critical, our truncation with 168 modes produces a steady state. We find
(holding the Rayleigh number and the resolution in the radial direction fixed)
that, as we decrease the number of horizontal modes in the Galerkin expansion,I *1
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there is a transition from steady-state convection to a solution that is
periodic in time. As the number of modes is decreased still further, the
solutions become aperiodic. By computing how the energy spectra, convective
flux and temperature gradient change as a function of the severity of
truncation, we not only show how the gross features of the flow are affected
by the truncation, but also provide a possible explanation for the time
dependence of our solutions.

It is likely that a truncation is justified if the dissipative modes as
well as those modes responsible for energy production and transport are
included. An easy way, of course, to show that all of the physically
important wavelengths are resolved is to repeat the calculation with an
increased number of modes and have the solutions remain unchanged. We have
predicted and numerically confirmed (for a spherical Rayleigh number -1I0
times critical and a Prandtl number of 10) that a truncation with an in-
sufficient number of horizontal modes will accurately predict the rate of
energy production and will: (1) alter the kinetic and thermal spectra by
increasing the amplitudes of the high-wavenumber modes; (2) make the mean
temperature gradient more isothermal and thereby lower the central
temperature; and (3) decrease the rate at which the temperature variance is
produced in the fluid. We have further shown that, if the truncation is too
severe, the thermal variance spectrum will become inverted, with the
high-wavenumber dissipation modes having more energy than the low-wavenumber
production modes. For a spherical Rayleigh number 10 times critical and a
Prandtl number of 10, the thermal variance inversion does not destroy the
time-independent property of the fluid but a kinetic energy inversion does
make the fluid time-dependent. We have also predicted and numerically
confirmed that single-mode calculation produces artificially thin boundary
layers (where the thickness is determined by the actual viscosity and not the
eddy viscosity). These thin boundary layers are needed to dissipate the
kinetic energy that is generated from the buoyancy. If the dissipative modes
had been included in the calculation, the kinetic energy would bave been lost
primarily through a turbulent cascade and not in a viscous boundary layer.

Modal representation can be used to predict transition to time dependence
in convective flow if sufficient care is taken so that enough modes are
included to resolve all of the important length scales. Clever and Busse
(1974) computed the bifurcation from steady-state rolls to time-dependent wavy
rolls and have shown that their truncation is valid because the amplitudes of
the velocity and temperature fluctuations are small. On the contrary, the
transitions to aperiodicity reported by Curry (1978) and McLaughlin and Martin
(1975) occur at large amplitudes and the Kolmogorov lengths are smaller than
the limits of resolutions of their truncations. Their sequences of transitions
would be more credible if more modes had been included. Even with 168 modes
in spherical convection, we find that when the flow changes to aperiodic the
dissipative length are no longer resolvable and we cannot be certain that the
transition is correct. Gollub and Benson (1980) have measured that the
bifurcation to aperiodicity in plane-parallel convection with a Prandtl number
of 2.5 occurs at a velocity of - 0.04 cm/s. Since the thermal diffusivity is
-1.5 x 10-3 and the horizontal dimensions of their cells are -3 x 1.5 cm,
the thermal dissipation length is - 0.1 cm. This means that we would require
25 x 12 horizontal modes to reslove the dissipative length scales. An
optimist might argue that although the model calculations do not include the
dissipative length scales they may still be qualitatively despite the fact
that the bifurcations are not at the exactly predicted Rayleigh number. The
pessimist might argue that, if a theorist were provided with an experimentally
determined sequence of bifurcation, he could probable find a set of nonlinear

1-- ,
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autononous equations that qualitatively reproduced the sequence and then fin,
a set of modes that correspond to his set of nonlinear equations. Our final
caution is illustrated by considering the single-mode equations, which are a
function of time and one spatial dimension. Although the single-mode
equations do not correspond to any physical system, they are nonlinear and
share many of the properties of actual nonlinear equations that govern
convection. From our numerical experiments and those of Toomre et. al. (1977)
it appears that the single-mode equations always admit at least one stable,
steady-state solution for all Rayleigh numbers. If we examine the transition
to time dependence of these equations using a Galerkin expansion in the
vertical coordinate we would arrive at some erroneous conclusion. With one
vertical mode we obtain the Lorenz model that predicts a bifurcation to a
strange attractor, which is incorrect. An important feature of the
single-mode solution is the development of thin boundary layers which provide
a place for kinetic energy to dissipate and whose thickness decreases with
Rayleigh number. As the Lorenz model is supplemented with an increasing
number of Fourier modes there will always be some Rayleigh number for which
the Galerkin truncation can no longer resolve the boundary layers. We
conjecture that any Galerkin truncation of the single-mode equation always
produces an erroneous bifurcation to time dependence at the Rayleigh number at
which the boundary layers become unresolvable.
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TROUBLEMAKERS IN A FOURIER SERIES APPROACH TO TRANSITIONS

John Whitehead

High Prandtl number convection possesses a square flow pattern that i
steady and is apparently stable to infinitesimal disturbances in that it has
been observed to not break down in experiments (Whitehead and Parsons, 1978).
The square pattern appears to be unstable to finite amplitude disturbances,
however, because a more chaotic (in time and space) spoke pattern of convec-
tion eats its way into the squares from the lateral boundaries. Experiments
will be described here in which the breakup of the squares is initiated by
dislocating one square in the middle of the apparatus with the use of a small,
heated thermistor. Once a critical heating rate and time is exceeded, the
squares cannot heal themselves even if the heater is removed, and the disloca-
tion initiates a spoke cell which then eats into the squares and destroys them,
resulting in the more chaotic spoke pattern. It requires more heating to do
this as the Rayleigh number is increased. Dislocations do not do this in some
other regions of parameter space (Whitehead, 1976), and the conditions which
must be fulfilled for dislocations to lead to chaos are not known.
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A DESCRIPTION OF THE LORENZ ATTRACTOR AT HIGH PRANDTL NUMBER

Andrew Fowler

The Lorenz equations

X + cr

) -(1)

La,_
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have the following bifurcation structure: for 04t-41, the origin X - Y = Z = 0
is stable, for r>l it is unstable and two nontrivial steady states X = Y

jb(_r - I)', Z - r - 1, exist; these are stable for 1 4 r < rc, where

1 ++ 3) (2)

For r > rc, all three steady states are unstable, and Lorenz (1963) found

numerically that the solutions oscillated irregularly on a 'surface' in phase
space which is now called a strange attractor. He also found that a cartesian
plot of successive pairs of maxima of Z in a sequence {Mn) obtained from

numerical '.ntegration appeared to lie on a single curve with pronounced cusp.
Knowledge of difference equations (e.g., May, 1976) is sufficient to 'explain'

the aperiodic behavior of the solutions, and indeed other facets of the
solution behavior, such as intermittency (Manneville and Pomeau, 1980), period

doubling (Robbins, 1979) successive transition between periodic and aperiodic
regimes (Morioka and Shimizu, 1978), provided that an appropriate difference

equation may be constructed directly from the differential system. This is

the aim of the present work.

To attempt such a direct analysis, we need the help of an appropriate

asymptotic regime. (Particularly, we might expect a difference equation for
one variable to emerge from a relaxation-type of motion.) Robbins (1979)

shows that a weakly dissipative limit cycle emerges at high r, which thus
precludes the chaotic motions we seek. Rather, motivated by (2), which shows

that rc 0o as r--*o, we seek to analyze the limit

by defining

,~ 1 (3)

and studying the asymptotic form of the solutions as - . To do so, we
rescale the variables and time T by putting

X - L t. T , -- , T ,  (4)

so that

A~t4 _ (i-,- (5)

S -

A complete analysis of these equations (as S-po ) is provided elsewhere
(Fowler and McGuinness, 1981): in essence, the behavior is as follows:

There is a fast time behavior for t - 1. To leading order, we neglect 0(S )
in (5); there is then a first integral for y and z, and a substitution

(6)

leads to the damped pendulum equation

+ + .. o ( 7 )
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whose solution 4o exponentially as t -900 . For large t, the xy forcing in
the z equation switches off, and there is a slow recovery phase t - 1/4 , in
which z %Mne - Si (14n I 1 + T'K/); then x, y are governed by the
linear equation

~ i ri~e0i (8)

during the slow phase; this can be solved asymptotically or (fortuitously)
exactly in terms of Bessel functions. Of r.he two independent solutions to (8)
XI and x 2 say, xl-, 0 as Zt _. , but x2 - as rt--.0  • Thus
x (and hence y) eventually grows again (from an exponentially small value) and
another fast pulse is initiated. Generally, matching of the fast pulses gives
a relation for the next maximum of z (or Z), Mn+l, in terms of the previous
maximum, Mn; this is analogous to Cole's (1968) procedure for the
Van der Pol oscillator. However, for the particular choice of Mn for which
the coefficient of x2 vanishes (or is small), the slow trajectory (almost)
lies on the two dimensional stable manifold of the origin, and the succeeding
maximum is very large (corresponding to a large value of K). Such trajec-
tories signify cusps in the difference equation, which explains Lorenz's
original cusp, and in fact produces a few more (see also Lorenz, 1979; Marzec
and Spiegel, 1980; Fowler and McGuinness, 1981). An approximate description
of the difference equation is given by

'A - q~) 1(9)

M 2 - k iAi' ()Pe..p \S'2~

where k, X are 0(l) constants, and = O(

By examining the form of (9), one can obtain an explanation (and approxi-
mate location in parameter space) of such phenomena as periodic and aperiodic
behavior, period doubling, intermittency and hysteresis.

Since the Lorenz equations were derived from a model of two dimensional
Benard convection, it is pertinent to enquire whether an analysis such as the
above will carry over to the full equation. This is under consideration at
the time of writing: preliminary results are inconclusive; specifically, the
distinguished limit Ra r does not seem to admit a solution of the relaxa-
tion type discussed above and by Howard (1966), but an examination of
Ra >> o- 1 may be more relevant.
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ON THERMAL CONVECTION IN A FLUID WITH STRONGLY

TEMPERATURE DEPENDENT VISCOSITY

Stephen Morris

When a fluid of infinite Prandtl number and strongly temperature-dependent
viscosity convects in a region with free-slip boundaries, two extremes are
possible. In the limit Ra-9o. with the viscosity contrast Y /,, - > I but
fixed, we should expect the motion to resemble isoviscous convection, but if
4/Y --00o with Ra >> 1 the motion resembles convection in the presence of a
liquid to solid phase change. The two extremes can be seen in the numerical
work of Lux and Sacks (1979), who present temperature and velocity profiles
for convection driven by heating from below. As the Rayleigh number is
increased with the viscosity contrast fixed, the vertical temperature profile
approaches that for isoviscous convection as the fluid motion begins to
penetrate the cold, stiff upper layer. At low Rayleigh numbers the motion is
confined to the hottest part of the flow, and the temperature profile is very
asymmetric.

Here we shall discuss two analytical models which show up the causes of
this behavior. These analytical solutions are possible when the viscosity
depends strongly upon temperature, for in that case the essential viscosity
variations occur over a distancefmuch shorter than the length scale S of the
temperature field. see Morris (1981a). We shall describe the solutions for
the case V' Ae , where A and Y are given constants.

(i) The two dimensional hot plume.

Suppose that the horizontal plane z = 0 is impermeable and stress
free, and that all of it except for the strip xI - d is at the undisturted
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temperature of the fluid. The strip Ixj 4 d supplies a heat flux qo per
unit length in the y direction. The virtue of this flow is that it is
possible to get simple solutions which show the evolution cf the plume from a
flow dominated by the viscosity variations to one which is essentially
isoviscous. As with all plume solutions it has the disadvantage that the
ambient conditions are prescribed, so that the convection does not affect the
environment.

There are two different contributions to the velocity field which
maintains the thermal boundary layer of the plume. First, because the
viscosity depends strongly upon temperature, it is most strongly reduced in a
channel which straddles the centerplane of the plume and across which the
temperature varies by an amount of order Y-i . The channel is thus much
narrower than the thermal boundary layer if YA T > 1 (sketch). The vertical
volume flux will tend to be concentrated into this channel, for the fluid
there is much less viscous than the surrounding fluid. This volume flux can

id f

AT :[. g

only be supplied by entrainment into the channel so that the external fluid
sees the channel as a plane sink whose strength depends on z. The sink sets
up a potential flow in the surrounding fluid. Secondly, the fluid outside the

channel has a temperature difference of order AT applied to it and will thus
see a shear stress applied to it at x = 0. A vortical flow results, and in it
the vertical velocity increases with z, for the longer a parcel of fluid has
been rising, the longer it has experienced the buoyant force. On the other
hand, the viscosity within the channel increases strongly with height, so that
the potential flow should weaken with z. This suggests that the entrainment
wind should be most important in maintaining the plume close to the heat
source, while the vorticalflow will take over this role for larger z.

A partial solution to this problem can be given by assuming the plume to
be maintained by the entrainment wind. The flow which results has an
analytical solution which can be obtained by using the fact that the channel
Is much thinner than the thermal boundary layer. It is then possible to
estimate the vertical velocity in the external flow and hence to estimate the
height at which the external flow takes over the maintenance of the plume.
The details are given in Morris (1981b). I estimated that for reasonable
values of the parameters in the problem the vertical velocity would be of
order 10-6 to 10-5 cm/sec, that the central channel should be between 1
and 3 km wide, and that the vortical flow should control the thickness of the
thermal boundary layer for distances >ii0 km above the source. If partial
melting occurs within the plume, the last figure will be larger and the other
two, smaller.

To give a more detailed analysis you must solve for the external flow and
couple that solution to the one for the channel. That analysis is in progress.

a - - .-
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(ii) Convection in a narrow vertical slot.

It is fairly obvious how to give a self-consistent asymptotic
analysis of the hot plume, for in that case the viscosity variations tend to
concentrate the motion. It is less obvious how to analyze the cold plume, for
the densest fluid is also the most resistant to deformation. The easiest cold
flow to describe is that induced when a cold semi-infinite plate is placed
vertically in an infinite fluid. Having solved that you can give a partial
solution for the flow induced in a narrow vertical slot when its side walls
are differentially heated. This problem has some difficulties in common with
the corresponding isoviscous problem. We shall describe the partial solution
first, and then the difficulties in their solution.

(iia) Flow due to an isolated cold wall.

Consider the situation shown. There is a similari.:y solution to the
governing equations. Let

-Y 9~ ~ Lf 6 - T In
Y.

T o T

where - T. 1.

Then the vrtical momentum equation is

~~4 A-)2 e tL1
- (1)

where t Yb T > i, and T- . The energy equation is
K

0
(2)

where f(o) = f'(o) - f'(-o-) - h(-oo) - h(o) - 1 = 0. We are interested in
the case q-. - , and t -h 1 and fixed. As in the corresponding isoviscous
problem, the flow consists of a thermal boundary layer, in which the advection
of momentum is negligible, and an external momentum boundary layer in which

inertia returns the vertical velocity to zero from the plate.

Well into the cold boundary layer the fluid is so viscous that we expect
heat to be transported by conduction alone so that h is linear in ' • Also, at
- ao, h = 0. This gives the asymptotes shown. There must be a smooth transi-
tion from one asymptote to the other, and the temperature change across this
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corner region should be of order Y-l, the e-folding temperature scale for

It

viscosity. Since the vertical velocity attains its maximum across this layer,
it is a simple matter to scale the equations (1) and (2) with T -a . We find
that IT -tl/4, A , t5 /4 and that f' is of order t-1 /2 at the outer
edge of the corner layer.., 7he maximum vertical velocity is thus of order wo

ffi R /2 where R while the heat flux, made dimensionless
against C KRT is - R1 / 4 . t - l. Note that the Rayleigh number is
based on the viscosity of the least viscous region and the temperature scale Y

When equations. () and (2) with a= are rewritten in coordinates
centered on the corner layer and using IT as the length scale and t-1 as
the temperature scale, there is no simplification in the differential
equations for t .> 1. But because A /-'T = 0(t), the boundary conditions at

= 0 are now applied at o . After some juggling the boundary value problem
can be solved numerically.

The analysis for the momentum boundary layer Is the same as it is for the
isoviscous problem. We find M i/2ti/4.

A related analysis of a variable viscosity flow has been given by Ockenden
and Ockenden (1977).

(Cub) Convection in a vertical slot with differentially heated walls.
We can extend the solution (iia) to get an idea of the effects which the
buoyant layer will have on its surroundings by studying convection in a narrow
vertical slot. The floor and roof of the slot are perfectly insulated and
stress free. Consider the case in which the flow in the slot is creeping flow
with the temperature differences confined to thin thermal layers next to the
boundaries of the slot. We shall suppose that the region outside the boundary
layers is isothermal, although it is well known that this is not observed in
practice (see section (iii)). With these assumptions a partial solution can
be obtained, for we can solve for the hot and cold boundary layers in terms of
the as yet unknown temperature differences across them. These temperature
differences are fixed when the core temperature is known. It in turn is
determined by the condition that the heat flux through the cold wall must
equal that through the hot wall. The temperature profile then has the form
shown in the sketch. The flow has two main parts. Near the cold wall there is
a stagnant layer across which heat is transported by conduction; almost all
of the applied temperature difference Th - Tc occurs across this layer.
The temperature difference across the rest of the slot is of order ' -i
Here A, A and w have the orders of magnitude given in part (iia), with the
parmeter t =#(Th - Tc). In particular, the heat flux through the cell is

1
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Tt T, -

controlled by the Rayleigh number based on the viscosity of the least viscous
region, and on the temperature difference across that region, for that is the
only fluid which is convecting.

Having solved for the thermal boundary layer, you know the velocities at
their outer edges and you can solve the lubrication equations to determine the
velocity within the core. Because the slot is narrow, it seems reasonable to
neglect the ends for points sufficiently far away from them (but see section
(iii)); they can be replaced by the condition that there be no net mass flow
up the slot, Jdx w = 0, which suffices to fix the vertical pressure
gradient. The streamlines in the core then have the shape shown in the
sketch; on the

scale of the diagram the boundary layers occupy the dotted region. The orien-
tation of the eddy is compatible with the idea that the boundary layers are
maintained by entrainment.

So far the solution appears self-consistent, and gives a dramatic picture
of the effects of strongly temperature-dependent viscosity on the temperature
and velocity profiles. But we shall now show that this solution is at best
quasi-steady, and that the core must slowly stratify. I have not yet done the
underlying analysis and the arguments are thus more speculative.

(iii) The development of stratification.

Elder (1965) noted that for aspect ratios greater than or of order
one, the core of the cell is stably stratified, and that the vertical velocity
is nonzero only in the boundary layers. Here is an explanation of why this
should be so. A similar explanation has been given by Robinson (1967).

Consider first the case of convection driven by heating driven from below,
and look at the hot plume formed when the lower boundary layer detaches. Over
the lower half of the cell, the plume entrains fluid from the isothermal core
of the cell and there must be some way of cooling this fluid if the cell is not
to stratify. In the sketch the dotted line marks the edge of the hot thermal
layer, and the solid line is a streamline. Above the midplane of the cell, the
two lines almost coincide. The lateral boundaries of the plume fan out near the
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upper surface of the cell. Sufficiently far from the centerline of the plume,

COHOT

I
the outer edge of the cold horizontal boundary layer intersects the outer edge
of the plumE, and the absorption of the plume is complete. The mushroom of
warm fluid is stable, because the heating is from below.

This is not so when the heating is from the side, and the mushroom (on its
side this time) could exist only if the fluid in the core could exert enough
stress to drag the buoyant fluid down. An order of magnitude estimate sug-
gests that this is not the case, so that the warm fluid could be destab-
ilized only by entering the cold vertical boundary layer directly (see sketch).
Since that is a fairly slow process, warm fluid will slowly accumulate at the
top of the slot. This of course is the beginning of the situation

" I

CI I
I I

c

described by Elder; this upper, stably-stratified boundary layer must now grow
in thickness simply because all of the fluid entrained by the hot vertical
boundary layer is added to it. What saves the solution (iib), for the purpose
I have used it for, is that this stratification will apparently develop only
over a time scale of order the width of the slot divided by the entrainment
speed into the vertical boundary layer. The solution (ib) is thus quasi-
steady.

(iv) Remarks.

Convection in a slot can never show the return to isoviscous behavior
which seems to be shown by a cell with stress-free boundaries. As the Rayleigh
number of the slot is increased, the cold boundary layer becomes thinner but
it is never easily deformable simply because of the presence of the rigid wall.
That is obviously not the case when the boundaries are stress-free. I am at
present formulating a simple model of this phenomenon. The idealized solution
(iia) is a useful starting point.
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A DISCUSSION OF COMPOSITIONAL CONVECTION

David Loper

Compositional convection occurs when a liquid mixture or alloy is cooled
causing partial solidification. Examples of its occurrence include the
casting of metallic alloys, freezing of sea water, subcrustal circulation of
sea water near midocean ridges, magma chambers in the crust, the earth's core,
other planetary interiors (particularly Saturn) and stellar interiors. Compo-
sitionally driven convection differs from thermally driven convection in
several respects. First, in a two-component system with two phases present,
the equation of state for density may have b6/4T>o rather than the normal
b/ar <o where p is density and T is temperature; in this case a fluid
cooled from below is convectively unstable. Almost always the freezing
interface is dendritic, forming a dendrite layer or "mushy zone" between the
liquid and solid. Since material diffusion occurs only on very small scales,
i.e., within the dendrite layer, the only way a parcel of fluid can change its
composition is by passing through the dendrite layer. Hence, in a steady flow
all streamlines must pass through the dendrite layer. Calculations show that
the inner-core boundary of the Earth is very likely to be dendritic and the
dendrite layer is very thick, possibly extending to the center of the Earth.
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CHAOTIC BEHAVIOR OF MILDLY UNSTABLE BAROCLINIC WAVES

Joseph Pedlosky

A review was given of the derivation of the amplitude evolution equation

for a weakly unstable baroclinic wave on an f-plane, whose amplitude A(t)
satisfies:

+ 2 --L - A + A Jdy sin 2 y -0

2 lII II II
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5~A 24tf~ + (~gA 2 2 VJI 2) sin21y

where Y is a nondimensional measure of Ekman layer dissipation, a is the total
wavenumber of the wave while § (y,t) is the stream function for the wave-
induced correction to the mean thermal wind. J must also satisfy

i = 0 on y = 0, 1.

Numerical integrations of these amplitude equations showed a complex dependence
on Y . Simple limit cycle behavior for small s' gave way, through a sequence
of period doubling which satisfied the Feigenbaum relation (1978), to chaotic
behavior at moderate Y . At higher Y steady solutions obtained.

When a weak -effect is added to the above model the coefficient of the
linear term in the equation for A becomes complex. As P is increased from
zero, the chaotic behavior is smoothed away and periodic halving occurs,
until for quite small values of 1 only steady solutions obtain. This latter
result is a joint consequence of and Ekman dissipation.
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STABILITY BOUNDS ON THE AMPLITUDE AND STRUCTURE OF

TURBULENT TRANSPORT PROCESSES

Willem V. R. Malkus

In the spirit of optimum transport theory (L. N. Howard, 1972; F. H.
Busse, 1978), vector fields are considered which include the realized fluid
flows and are compatible with an arbitrary number of constraints derived from

the equations of motion.

Here, however, only the vector fields associated with the averaged trans-
port equations are broadened beyond those permitted by the full equations.
Among these vector fields one seeks to determine that subset which produces
the most stable equilibration at any particular values of the Reynolds,
Rayleigh, and Prandtl numbers. Hence the flows and temperature fields which
are found are at least as stable as the realized flows and fields. Quanti-
fying arguments based on marginal equilibration have been used frequently for
turbulent flows driven by buoyancy-like forces (e.g., Barcilon et. al., (1979).
However, it has been thought that turbulent shearing flows had very stable
mean fields (e.g., Reynolds and Tiederman, 1967). Here we discuss the form of
this theoretic proposal and first results for the case of parllel channel
flow, exhibiting the sense in which the observed velocity profiles are
marginally equilibrated against both two and three dimensional disturbances.

1
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The equations for the local time-averaged velocity, U(x), and the fluctuating
velocity, u, in channel flow are

U V U + + - Z o(i

and u "

where the overbar indicates a local time average. By definition no u grows
unbounded on the average U in equation (2). A typical disturbance u must
decay, or at most achieve a finite amplitude equilibration. From equation (1),

(u. T u). Here it is proposed to write U = U (E .vc), where c is a
broader class of vector fields than u. Then the class of fields U = U (F. c)
leading to marginal equilibration in equation (2) is to be narrowed by
requirements relating u to c. For example, if u . ivu is one dimensional then
one may write

" A 1A k (3)4'-

k. -a

and similarly for c. The general relation

Yk.&k k. (4)

is to be met, first for a few n, then in principal for all n. At any point in
the application of constraits an idealized flow emerges. One is to determine
its correctness by computing the change in average properties caused by the
next constraint and, of course, comparison with experiment. The first step in
this proposal is to find the most stable marginal equilibration free of any of
the constraints (4) other than boundary conditions. In the language we became
familiar with during our GFD 1981 summer program, we seek that central
manifold of the disturbance (2) which is of maximum codimensionality.
Adjacent to that manifold is the realized chaotic flow. This first step
quantifies mean fields for the problem, which may or may not be unique. The
second step of the proposal is to apply one or more of the constraints (4) to
the lowest order amplitude equations of the central manifold. This will
determine the amplitude and structure of a 'model' M field, whose moments can
be compared to observation to test the adequacy of the constraints employed.
Only results of first steps towards the parallel channel flow problem are
reported here. Numerical computations utilizing an analytical-empirical class
of velocity profiles proposed by Reynolds and Tiederman (1967) as a base, but
adding zero-averaged downstream stresses determined by the three dimensional
eigensolutions u, establish that this (generalized) ! (z,x)2 is marginally
stable for values of logarithmic slope and boundary intercept constant close
to those observed. The downstream and cross-stream oscillations which lead to
this result indicate that this first theoretical U is not unique.
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INVERSE METHODS FOR OCEANOGRAPHY

J George Veronis

The principal constraint that is used with the inverse method for
determining barotropic velocities in the ocean is the conservation of mass for
(M) suitable chosen layers in a closed-box region. When mass conservation is
coupled with geostrophic balance for the baroclinic field velocities in a
region with N pairs of hydrographic stations, a system of M linear equations
is obtained for the N barotropic velocity components that are required to
provide mass balance. In matrix form the system reads Aijbi = Cj where
Ail is the matrix of coefficients determined by the areas bounde above and
below by the bounding density surface of a layer and at the sides by the
stations, bi is the barotropic velocity vector at station pair, I, and
Cj is the transport imbalance for the layer, j. With M << N the M x N
system is highly underdetermined.

The method of solution augments this system with an artificial N x M
*' 'I,system of overdetermined equations, Ajid j = ei, where Aji is the trans-

pose of Aij, to generate a symmetric coefficient matrix of size (N + M) x
(N + M). The eigenvectors and eigenvalues of this augmented problem are then
used to obtain a representation for the barotropic velocity, b, where the
amplitudes of the eigenvectors are determined by the Cj. The formal solution
makes no use of the null vectors of the space of the A matrix and in that sense
the quantity t 1 is minimized. The solution is sensitive to noise and
other uncerta nties in the quantities used to make up the components of the A
matrix and of the C vector.

A simple analysis of some schematic examples shows why the above under-
determined system is sensitive to noise. Basically, the layer thicknesses
have only small deviations from a constant value and it is the small deviation
which determines the solution. The largest deviation with real data normally
arises from bottom topography so topography should show up strongly in the
horizontal structure of the barotropic velocity field. Results taken from a
recent study by Wunsch and Grant (unpublished) show just such behavior.

Since the primary reason for the high sensitivity of the barotropic
solution to noise , etc., is the poor horizontal structure of the layers, an
attempt to use information other than the (nearly uniform thickness) density
layers is suggested. A preliminary map of fields of potential vorticity and
the Bernoulli function provides the desired structure. Use of these fields of
greater structure is now being incorporated into the universe method.

SLOW BOX-MODEL OSCILLATORS

3 Pierre Welander

Well-known oscillators driven by differential heating have compressibility
or inertia as critical effects: examples include the "glassblowers organ"
(compressibility) and the Howard-Malkus "loop oscillator: (inertia), and

various oscillators studied by astrophysicists (inertia and compressibility).
There also exist oscillators which lack both compressibility and inertia, but
with destabilizing diffusive effects. Two specific examples, studied by the
author, are used as examples. The first example is the U-oscillator, obtained
by connecting two open reservoirs by a U-loop, and applying heating from below
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(Welander, 1957), see Fig. 1. Once warm fluid starts up one of the branches,

CC

FIGURE 1

it creates a net buoyancy that keeps the motion going until arrested by the
slowly growing opposing head due to level changes in the reservoirs. The
system would stop in an unsymmetric position were it not for diffusive effects
that tend to make the temperature distribution symmetric; once the flow
reverses it keeps going in the same direction, etc. Typical is the strongly
nonharmonic shape of the oscillation, and the critical dependence of the period
on the diffusion. A simple theoretical model of third order, involving two
well-mixed boxes can be constructed (not given here; after seeing the next
system the reader may get the idea how to do it him/herself).

It is pointed out that the "salt-oscillator" by Martin (1970) has many
similarities with the U-one (see Fig. 2).

SALTY

- FRESH

FIGURE 2

In the second oscillator considered, the existence of two diffusive time-
scales is important, like in well-known double-diffusive phenomena (salt-
fingers, etc.). Consider a well-mixed box of water warmed by a flux
kT(TA-T) and made salty by a flux kS(SA-S). Generally kT >> ks,
and we assume this to hold. The box sits on top of a large reservoir with
temperature To = 0, salinity So = 0 and (perturbation) density p o 0,
with a false bottom allowing some turbulent exchange (see Fig. 3). The flux

e
A A
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FIGURE 3
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from this reservoir to the upper box is k(f ) (To-T) for heat and
k( p) (So-S) for salinity, with k(r ) small if r< 0 (statically stable),
large if F > 0 (statically unstable). The equations are in one specific,
simple example:

"kT(TA-T) - k( )T -T + S

S kS(SA-S) - k(r )S k = ko if -

k = kI if > f

Here ko and i are small numbers,kl a large number. The parameters are
chosen such that the steady state for the statically stable regime lies in the
statically unstable regime, and vice versa, (see Fig. 4). Thus a steady state

fj

9.40
/

FIGURE 4

can never be reached. If i - 0, the solution goes into a vibration that
increases its frequency forever; if i is finite but small self-sustained
oscillations can be obtained. Again, an example of how a small parameter
becomes decisive! Since the solution is exponential in each regime, the
problem can be solved analytically, but the joining of the exponentials to get
a full cycle becomes a little tricky. A problem recommended for students,
therefore.
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LARGE AMPLITUDE CONVECTION IN POROUS MEDIA

John Booker

Despite its importance in several geophysical contexts, strong thermal
convection in a porous medium is poorly understood. Numerical work is plagued
by instabilities even in the 2D case and experimental results are divergent.
There have been several attempts to construct a boundary layer theory (i.e.,
Robinson and O'Sullivan, 1976) but all turn out to be inconsistent. Estimates
of the exponent in the Nusselt number-Rayleigh number relation range over the
remarkably wide range of 1/3 to 1.

!.A
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We have performed a simple experiment in which a Hele-Shaw analog of a
porous medium is heated from below and cooled from above. At large Rayleigh
number (20 times critical) the flow is stable and exhibits unmistakable
boundary layer character: Each roll develops a stagnant core around which
fluid circulates in a thin layer.

Our experiment suggests the boundary layer model shown in Figure 1.

The vorticity equation in a 2D porous medium is

a' " -" (1)

where R is the Rayleigh number and % and e are nondimensional velocity and
temperature. (1) immediately implies that the stagnant core is vertically
stratified and that the plume velocity

= el - e4(r1 (2)

0 =---

U •
/ *1

FIGURE 1

An analysis similar to Gill's (1966) for a thermal boundary layer on a
vertical plate in a viscous fluid shows that the plume rises with constant
temperature and without entraining fluid from the core, if the core has a
stable linear stratification. Then (2) shows that W decreases as the plume
rises. The plume spreads and eventually flows over the top of the core where
the temperature of the plume becomes the boundary condition which maintains
the stratification of the core.

A top hat approximation for the plume temperature predicts that the stream
lines in the plume are rectangular hyperbolas. This velocity field has a
similarity solution for the thermal boundary layer on the horizontal boundary
which is independent of x and has thickness 5. 1 / J.--o where eo is the
plume temperature. It also turns out that the thickness of the transition
between the plume and stratified core is 9. so that the top hat approximation
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is consistent if 4<  , the plume width. Conserving heat and mass flux
through the corner where the horizontally spreading fluid turns into the
rising plume gives 9 = 1/4t e o  o

To close the problem and determine 0o, one needs to consider the details
of the corner. Although it is virtually certain that similarity techniques
will give an approximate solution that properly entrains the horizontal flow
above the boundary layer and matches fluid input from the thermal boundary
layer and output to the plume, we have not completed the details. I therefore
use an empirical closure.

Displacement of a horizontal dye line at mid-depth corrected for the
spreading streamlines (which are in good agreement with the expected hyperbolic
form) gives .( 0.141t Roi

Hence 7 ,, -

where N is the Nusselt number. Scaling of the corner physics confirms the
liklihood of the S -, conclusion.

Most of the problems in published heat transfer experiments occur
because So becomes comparable to the grain size. The only high R data with-
out this difficulty are given by Combarnous (1970). His results are very
close to the predicted N_ p2/5 relation.
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PATTERN SELECTION IN RAYLEIGH-BENARD CONVECTION NEAR THRESHOLD

Eric Siggia

The influence of internally generated vertical vorticity on the Rayleigh-
Benard problem has been quantitatively analyzed by means of conventional multi-
scale perturbation theory for free slip boundary conditions near onset. The
competition between various roll patterns, all with the same basic orientation,
was first analyzed by means of an amplitude expansion by Newell and Whitehead
(1969). Their theory has the characteristi- that the slowly varying amplitude,
A, satisfies a first order equation in time whose right-hand side is derivable
from a Liapunov functional. The system must then relax so as to minimize this
potential.

To our surprise we found that for free-slip boundary conditions the Newell-
Whitehead equation is incomplete even to lowest order in L - R/Rc - 1. Any
curvature in the rolls generates a vertical vorticity that is independent of
the vertical coordinate. The associated slowly varying horizontal velocity
enters the equation for A convectively, thereby leading to a feedback onto the
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source of the vorticity itself.

The secondary instabilities which nearly parallel rolls undergo are
qualitatively modified by the inclusion of vertical vorticity. All wavelengths
shorter than the most unstable ones are unstable to a version of skewed vari-

cose instability first discussed by Busse and Clever (1979) for rigid bounda-
ries. The zig-zag instability is suppressed for Prandtl number, P 10.

While no calculations have been done for rigid boundaries, it is plausible
that the source of vertical vorticity is unchanged except for being a factor
6 1/2 smaller, since it must vanish on the top and bottom surfaces. The sta-
bility predictions of our model agree with exact numerical calculations of
Busse and Clever (1979) for small P, which is where agreement would be expected
expected.

The most interesting conceptual and perhaps calculational applications of
our amplitude expansions may be to the onset of convection in a large box for
P 1. Since the dynamics of A is no longer relaxational, a time dependent
flow can persist even within the "Busse Balloon" if the pattern is not ideal,
due either to the lateral boundaries or uncontrolled initial conditions.
Numerical experiments were done at = 0.5 and P = 4 which suggest that as
the system size increases, a slightly scrambled pattern does not relax back to

the stationary locally stable states we know to exist for these parameters or
at least does so on a time scale that is much longer than a diffusive one.
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WEAK TURBULENCE IN SMALL ASPECT RATIO CELLS:

THE CASE OF LIQUID HELIUM

Albert Libchaber

Introduction

We describe some experiments on Rayleigh Benard convection where, through
a strong truncation of the experimental situation (use of small aspect ratio
cells), some direct comparison can be made between the various routes to turbu-
lence observed in experiments and the theory of dynamical systems.

As a liquid, helium is an interesting case. One can vary the Prandtl
number from about 0.4 to a few units. This is the range where the two
competing nonlinear terms in the heat equation and the Navier Stokes equation

overcome one another. At low P the V - VV term is dominant and lead to
the oscillatory instability. At high P the v V.Tr term is dominant and th,

I I I, I II m
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skewed varicose instability sets in.

I Also in liquid helium, given the large expansion coefficient and the small
kinematic viscosity, experiments are performed with a small distance between
top and bottom plates. This leads to somewhat higler dynamical frequencies
and the data acquisition can be fast.

Finally, the low temperature techniques allow a very good stability and
regulation of the experimental set up.

In experiments described here we use rectangular cells with two convecting
rolls present. We present here two routes to chaos which have their analogy
in dynamical system theory: the period doubling bifurcation to turbulence
(Collet and Eckmann, 1980; Echman, 1981; Feigenbaum, 1979) and the transition

to turbulence though intermittency (Manneville and Pomeau, 1980). We refer

the reader to other experimental work for a more general point of view of the
experimental scene (Gollub and Benson, 1980; Ahlers and Walden, 1980; Dubois

and Berge, 1980). In those scenarios we have always two oscillators present.
In the first case they are locked, in the second case they are unlocked.

The Period Doubling Bifurcation

This transition has been well analyzed in mathematical terms for one dimen-

sional maps of the interval (Collet and Eckmann, 1980). (Figure 1)

"\ . "i . . . .

I - I. ;' . .. ''

*4

FIGURE I

It is a continuous transition where, starting from an oscillatory state, as
one increases the Rayleigh number a frequency f appears, first with zero
amplitude and the amplitude grows continuouslyTas the Rayleigh number
increases. Thi, elementary period doubling may reproduce itself infinitely as

one increases the control parameter. The fundamental frequency is then
indefinitely divided by two and goes to zero at the end of the process which

s the beginning of a chaotic state. There is a scaling low in the transition
-- which reproduces itself in the next transition just changing the scale

Tn Rayleigh number, the frequencies by a power of two, and reducing the
amplitude of the new oscillator by a constant ratio.

t-1
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We have performed the experiment in a rectangular cell of depth 1.25 mm
and lateral dimensions 3 mm and 1.5 mm, the P number being P = 0.55. The
evolution of the period doubling cascade is shown on Figure 2 for increasing
values of R.

Another prediction of the theory is that beyond the accumulation point, as
one keeps increasing R, a mirror image of the cascade should exist (Figure 1).
We have also observed this phenomena (Libchaber and Maurer, 1981).

Transition to Turbulence through Intermittency

This transition has been analyzed theoretically by Manneville and Pomeau
(1980). Whereas the preceding one has been associated with pitchfork
bifurcation this one is associated with a saddle node bifurcation, i.e., the
collision between a stable and unstable fixed point which then both disappear.
But, beyond this value the system stays quasilaminar for a finite time and this

leads to intermittency. We observed the phenomena for a sample of depth 1.29
mm and lateral dimensions 3 mm and 1.5 mm, P = 0.62. We believe that the
skewed varicose instability was present. The data are presented on Figure 3.

R
A Rc

1, " 1 1174. 5

75.5

~ ~ 76 5

o 1 2 3 4 5 6 7 8 9
TIME (MINUTE)

Fig. 3. - Direct time recordings of the intermittent transition to turbulence for a cell. a = 2.7, Pr = 0.62. (R, Rayleigh nuthber for the
onset of convection). For RIR, = 74.5, a burst of noise is seen on the left; otherwise the signal, Fourier analysed, is a combination of
two frequencies f, and f 2 (Fig. 4).

1ZS

For " = 74 the recordings present no bursts of noise and the Fourier

spectrum in'dicates the presence of two unlocked oscillators. As R/9,
increases bursts of noise become more and more frequent and for R/=, - 79 the
recording is completely chaotic. If we define the onset at this transition at
the value of the Rayleigh number corresponding to R /R 74 and call it Ri,
we find that the laminar times diverge like "C= (R-) ./2.

Iii
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CONVECTION AT VERY HIGH RAYLEIGH NUMBERS

Theodore D. Foster

As the Rayleigh number of a convecting layer of fluid is increased, the
fluid motion becomes oscillatory and at very high Rayleigh numbers becomes
intermittent. Howard (1964) examined this phenomenon and proposed that at
very high Rayleigh numbers the buoyant boundary layer grows so rapidly that it
becomes unstable while its thickness is still a small fraction of the depth of
the entire fluid layer. The resulting convection rapidly destroys the buoyant
boundary layer which then starts to reform by diffusion. We (Foster, 1971)
have modelled this intermittent convection numerically and found that for flux
Rayleigh numbers,

where Q is the flux of heat through the boundary of the fluid layer, exceeding
about 107 the convection became intermittent. The period of this
intermittency was found to be given by

where C = 14 for an infinite Prandtl number fluid.

We have recently performed experiments in a small (25 cm cube) tank with a
controlled heat flux at the bottom and insulated on the sides and top. At

Aki
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flux Rayleigh numbers from 109 to 1011 the spectra of the temperature
I fluctuations in the boundary layer at the bottom showed most of the power was

centered around the predicted periods with an inverse square root dependence
on the heat flux.

We are now carrying out experiments in an insulated tank (3m in diameter
and lOm deep) which is heated 10 to 200C above ambient and then allowed to

cool from the top. Flux Rayleigh numbers up to 1017 are obtained. Initial
results show that the spectra of temperature fluctuations in the top boundary
layer (at the I cm level) follow the predictions of the numerical model;
however, spectra of the temperature fluctuation in the middle of the tank (at
the 5m level) are quite different and show highest power for periods an order
of magnitude larger than at the top. Our preliminary explanation of this
shift in period is that it is due to the generation of a larger scale
convection by interaction of the smaller scale convection as it moves away
from the boundary.
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TURBULENT CONVECTION

John L. Lumley

We discuss fully developed convection, which we treat statistically; we do
not examine the mechanism responsible for the apparent stochastic behavior.
We are interested in predicting quantitatively the structure of convectively

driven mixed layers including such practically important quantities as refrac-
tivity fluctuations which depend on water vapor and temperature fluctuations.
We describe first the work done on the atmospheric surface mixed layer, and
then its extension to include double diffusive effects.

The basic physical phenomenon (described in Lumley, et al., 1978) involves
the modifications of turbulent transport by buoyancy. Effectively, the
integral time scale of vertical motion may be much longer or shorter than that
of horizontal motions. We may see this by considering a first order cor-
rection due to buoyant acceleration to a nonbuoyant field, leading to a
diffusion coefficient of the form

where vi is fluctuating velocity, 04 is temperature fluctuation, J is a
Lagrangian time scale for persistence of temperature-velocity correlations,
and - is the usual Lagrangian integral time scale. This is the same form
obtained by Deardorff (1966, 1972) from simple modelling of counter gradient
transport. Notice that, near the inversion base, where - < , this
effectively suppresses the vertical transport, but substantially augments it

near the ground.

Now we wish to develop a simple, mathematically consistent formulation

embodying the above physics leading to a tractable problem. We have satis-
factory equations for second moments in homogeneous situations (Newman et at.,
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1981). We need an expression for the third moment. We know that homogeneous
turbulence without buoyancy is approximately Gaussian in the energy containing
range. We postulate a turbulence that has a probability density that relax s
to Gaussian in the absence of Inhomogeneity, buoyancy, and so forth, and tit
has at second order the accepted equations. We suppose this turbulence to Ke
find-grained relative to the inhomogeneity. This development is described n
Lumley (1978). Briefly, this leads to an eddy-damped, quasi-Gaussian Markovion
one-point form for the third moments, which are proportional to the gradients
of the second moments with a matrix of coefficients all of the form of (1).

This form was applied by Zeman (1975), Zeman and Lumley (1976, 1979),
Lumley et al. (1978), and Zeman (1981) to the modelling of the atmospheric
buoyancy-driven mixed layer. Equations for Z;, 7-, ;, , . Z, ,-, were
solved by simple-time-stepping. First-order mean quantities were well
reproduced, of course, including inversion rise, as were second-order
quantities. More significant, however, was the prediction of third-order
quantities within experimentor error.

We now wish to extend these ideas to include double-diffusive effects, in
particular the layered structure observed in the Mediterranean outflow, where
layers of turbulent buoyant convection are observed to alternate with layers
of saltfingers. We observed that the salt-fingering regions are characterized
by essentially one-dimensional turbulence in which the variables are perfectly
correlated (Lumley, 1980). We postulated there, if the modelled terms were
made to behave properly in the one-dimensional, perfectly-correlated limit, the
salt-fingering phenomenon could be produced. In support of this, Lumley (1980)
showed that these assumptions, applied to the second-moment equations, lead to
the classical stability criterion for salt-fingering.

To obtain well-behaved models in the one-dimensional perfectly-correlated
limit, the concept of realizability was extensively used: i.e., it was
required that the time derivative of quantities which were required to remain
non-negative, should itself vanish if the quantity in question vanished. This
lead to required forms in this limit, which could be modified by the inclusion
of an unknown function of the non-negative quantity. An example is the cross-
dissipation:

(K., ks) , = t7 (T'/ + T/, -4z/ F , I<C,/I) (2)

where g(x,y) is unknown save for the requirement that g(o,y) = 1 and probably
that g >, 1.

Similar considerations apply to the velocity field, where the quantity
= -- , V 'L) /S (in principal axes) must remain non-negative. The

various correlations have for the most part, known values in the one and two
dimensional limits amd in the isotropic case, and it is necessary to construct
interpolation forms dependent on F. connecting these cases.

This work is described in detail in Zeman and Lumley (198]). There equa-
tions for ;311, '1 , :- w, . , "-P S--, z were solved with simplified forms
for T and T (here +. is temperature fluctuation and s the salinity
fluctuation). A simplified form for the transport terms was used, with a

single transport coefficient

K (3)

, + r(T - ,54 4
~ -N5 y 3(5
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which bears a clear family resemblance to (1). .. and . are composite
mechanical/thermal and mechanical/saline time scales and N7 , Ns are the
Brunt-V~isAlA frequencies based on the temperature and salt gradients.

f We computed (one-half) a symmetric region consisting of a salt-fingering
layer between two convective regions. Initially, the mean temperature and
salinity profiles are specified, with a region of steep gradients where the
fingering layer is expected to develop. The initial distribution of anistropy
is uniform, at a value characteristic of turbulent buoyant convection. Very
quickly in the region of steep gradients the motion becomes one-dimensional,
indicating the development of a fingering layer. PredicLed values of the
salt/heat flux ratio, as a function of the buoyancy ratio, are quite similar
to the measurements of Turner. The salt-sugar case was also computed. To
obtain the correct ratios in both cases, it was necessary to introduce a weak
dependence on Prandtl number in the Z equations.
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EXAMPLES OF REVERSE CASCADES IN TURBULENT PHENOMENA

Marten T. Landahl

A number of different mechanisms are discussed whereby small-scale
turbulent eddies may induce large-scale motion and thus give rise to spectral
transfer from higher to lower wave numbers. Weak nonlinear interaction
between two wave components K1 and K2 will result in motion at a wave
number K1 - K2 , as well as at a wave number K1 + K2, leading to such
phenomena, as well as, e.g., subharmonic instability. Intermittent and
spatially localized small-scale motion, caused for example by local insta-
bility, will introduce motion of a scale of the size of the region of
instability. Small-scale intermittency is characteristic of strong nonlinear
interaction processes and is an observed feature of fully developed
turbulence. It is especially prevalent in the final process of transition to
turbulence in a shear flow in which the onset of small-scale motion is
extremely rapid making large spectral jumps both up and down the wave number
range possible.

Yet another class of backward cascading mechanisms, which has so far been
very little explored, is that in which the presence of the small scales can
induce the transfer of kinetic energy from the mean flow to large-scale
fluctuations, i.e., the small scale motion acts as a catalyst for the creation
of the large scales. It has usually been assumed that the presence of the
small scales adds an effective eddy viscosity to the flow, thus giving rise to
additional dissipation for the large scales. In the lecture, a counter
example from wind generation of water waves is presented. The model problem
treated is that of determining the wind induced growth rate of long water
waves of infinitesimal amplitude in the presence of short waves of finite (but
small) amplitude. Miles (1957, 1962) considered the problem for a single weve
component and found that waves in the capillary regime grow the fastest.
Growth rates calculated from his theory show generally good agreement with
measured data for short waves, but the theory tends to underestimate the
growth rate for long waves in the gravity wave regime. Interaction between
the short and long waves is shown to occur both in the water and the air and
give contributions to the growth rate of the long waves which are proportional
to the mean square of the short-wave amplitude. The interaction in the air is
found to be by far the strongest of the two. It arises because the modulation
of the short-wave Reynolds' stresses due to the presence of the long-wave
velocity field produces an added phase lag between the streamline at the edge
of the air boundary layer and the surface wave deflection. Thereby, the
pressure in phase with the long-wave slope increases and causes a corres-
ponding increase in the momentum transfer from the air to the water. The
numerical example presented, which is based on an inviscid model, demonstrates
that this mechanism can give a large contribution to the rate of growth of
waves in the short gravity wave length regime, also when the amplitudes of t ,e
capillary waves are quite small. It is surmised from this example that
small-scale motion in a fully developed shear flow could have a similar
catalytic effect on the large scales.
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STUDIES OF THE TRANSITION TO TURBULENT
CONVECTION USING SCATTERED LASER LIGHT

J. P. Gollub

We have studied convective phenomena in a large rectangular fluid layer
using a laser Doppler scanning technique that permits the structure of the
velocity field to be mapped in the horizontal plane. This mapping could be
done in a time shorter than the characteristic times of velocity fluctuations
near their onset, so that the space and time structure of one component of the
velocity field could be recorded in digital form. This approach is
considerably more powerful than local probe measurements at a fixed point.
The experiments were performed in a lOxlSxO.5 cm layer bounded by copper
plates, using water at 700C where its Prandtl number is 2.5. The light
scattering techniques, and experiments on layers of small aspect ratio showing
multiple periodic flows, phase locking, and subharmonic bifurcations, have
been thoroughly described elsewhere (Gollub and Benson, 1980; Gollub, Benson,
and Steinman, 1980).

We found that stable flows do exist above Rc, but are strongly
influenced by the lateral boundaries even for large layers. The rolls
preferentially align with their axes perpendicular to the boundaries, causing
the pattern to be splayed and to contain defects, where a roll of positive (or
negative) vorticity ends. Stable flows are only reached after transients
lasting for a day or so, a time comparable to the horizontal thermal diffusion
time for this system. We identify stable flows by verifying that Doppler
contour maps made several days apart can be superimposed; the roll boundaries
move by no more than a few percent of the roll spacing, except very near the
defects.

There are several distinct stable flows with different symmetries having
the minimum number of defects, which is apparently two. On the other hand,
patterns with many defects, which can be created by decreasing R from 3 0Rc,
are not stable, and continue to evolve very slowly even after a few days. In
this respect, the behavior of the system when many defects are present
resembles that of a glass.

The stable flows become unstable when the Rayleigh number is raised to
RI 5Rc . However, the fluctuations are sufficiently slow that their
space and time structure could be followed in detail by repetitive laser
Doppler imaging. We found that the rolls become unstable with respect to
deformations which repetitively pinch off rolls to form new defects.
Furthermore, this process leads to an increase in the average wave length of a
factor of two. These properties lead us to identify these fluctuations as
arising from the skewed varicose instability of Busse and Clever (1979). The
onset Rayleigh number is observed to be in quantitative agreement with their
prediction at our Prandtl number and wave number.

Above RI, the velocity field is not only time-dependent, but also
noisy. The power spectrum P(f) of the local velocity fluctuations is flat at
low frequencies, and falls off as f-n at "high" frequencies (but less than

0.025 Hz), where n = 4.1 -t 0.4, independent of R, for 5 < R/Rc < 10. The
linewidth frms of the spectrum (square root of the second moment), whose
inverse is a characteristic time-scale, is approximately linear in R above
R1. However, frms may be finite just above RI. Beginning at about
9Re, intermittent oscillations appear in the local velocity records, and
these are superimposed on the slower fluctuations already described. The
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spectrum then shows a broad peak at about 0.04 Hz which is initially rather
well separated from the f-4 falloff associated with the structural
deformations. This peak results from the oscillatory instability of Busse and
Clever (1979), and has also been noted in other experiments. These two
prominent spectral features associated with the transition to turbulence
gradually merge as R is increased, but remain distinguishable even at R =

50Rc.

In order to obtain a quantitative measure of the strength of the fluctua-
tions we applied a line source of heat parallel to the short side of the cell
using a teflon coated wire located 0.6 mm above the lower plate and 3 cm from
the end of the cell. We found that this local heating could suppress the
fluctuations. The area A under the low frequency portion of the spectrum P(f)
varies exponentially with h, the heat input: A = Aoexp(-h/ho), where the
attenuation constant ho is 14% of the heat flux carried per wave length at
15Rc. We interpret this observation to mean that the fluctuations are rela-
tively robust.

Thus, the following picture of the transition to turbulent convection in
large aspect ratio layers (at moderate to low Prandtl numbers) emerges:
Stable flows exist above Rc, but they contain defects because the rolls
align perpendicular to all lateral boundaries. Flows with many defects are
not stable. The flows always become time-dependent (and noisy) above RI, a
threshold that we identify with the skewed varicose instability. The
oscillatory instability is a later identifiable discrete step in the transition
process. Further documentation of this work is in press (Gollub and Steinman,
1981).
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STATISTICAL PROPERTIES OF MAPPINGS BY THE
CHARACTERISTIC FUNCTION FORMALISM

J. D. Meiss

Numerical experiments on two dimensional, area preserving mappings have
shown that motion which is formally deterministic can nonetheless have
properties characteristic of a random process (Chirlkov, 1979). For example,
the Chirikov-Taylor or standard map:

44
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exhibits momentum diffusion, D, with a value given approximately by assuming
that x is completely random (when - > 1).

Recently a series has been obtained for this diffusion coefficient by using
the Fourier transformed version of the map (Rechester and White, 1980;
Rechester, Rosenbluth and White, 1981). We have developed an extension of
this procedure which permits computation of any statistical property of the
map (Cary, Meiss and Bhattacharjee, 1981). The primary objects of our
technique are the characteristic functions

*Mk) (2)

where the xj are functions of initial conditions (xo, po) through the
wap, and the brackets indicate a time average along an orbit or an average
over initial conditions.

The characteristic functions are Fourier transforms of joint probability

distributions - and therefore contain all statistical information. In
particular, two point correlation functions Cj for time difference j are
obtained directly from YLj(m,o,...,o,n). The diffusion coefficient is in
turn given by summing Cj over j.

Explicit formulae for XC j are obtained by repeatedly substituting for
xj in (2) in terms of xj-l and xj- 2 as given by the map (Cary and Meiss,
1 8 1 ).

As an example, we calculate the diffusion for the sawtooth map (Cary and
Meiss, 1981).

A + P, (3)

where S(x) = x for -ir<x < and S (x + 21r ) = S(x).

We show that when E is an integer, the series for D truncates, and
therefore we obtain exact results:

I( + ZI > . ,- integer; or £ = -4

D = (0 '=-2, -1,0

The infinite value at £ = -3 is due to the presence of a stable
"accelerator mode". These results show that a deterministic motion can, in
fact, be rigorously diffusive.

The same techniques are also applicable to dissipative mappings and can be
used to obtain the statistical properties of strange attractors (Jensen and
Oberman, 1981). Furthermore, there has been some application of the method to

flows by discretizing the flow to construct a map and then letting the time
step go to zero (Jensen, 1981; Abarbanel and Crawford, 1981).

IA

1 t
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3 LECTURES OF FELLOWS

FIXED FLUX PENETRATIVE CONVECTION

Anthony J. Roberts

Naturally occuring convection rarely occurs between two plates as most

theories and experiments pres."c. Far more often the convection is bounded
vertically by a stably stratified region. Examples are the atmosphere when
the sun heating the ground initiates convection into the stably stratified air
above, while stellar convection zones are bounded by stable regions where the
mean free path of a photon has lowered the static temperature gradient below
critical. To model the situation where a stable region lies over a con-
vectively unstable region Malkus (1960) suggested an ice-water experiment
where water is contained vertically between two boundaries, the lower one
being held at a temperature near freezing and the upper boundary being held at
a temperature greater than 40C. Because water has a density maxima at 40C
we have the situation, displayed in Figure 1, of a gravitationally unstable
region lying underneath a stably stratified region.

/ , ,,. " > 4 .. ' "

FIGURE 1. Configuration of an Ice-Water Experiment

This experiment has been carried out by Furumoto and Rooth (1961),
Townsend (1964) and Myrup et al. (1970), while numerical experiments in two
dimensions are described by Musman (1968) and Moore and Weiss (1973). Veronis
(1963) analyzed the marginal stability using a vertically truncated spectral
method. Briefly the above authors found that the convection is subcritical

and usually occurs in a three-dimensional pattern of narrow rising plumes that
can penetrate into the stable region typically to a height about twice that of
the original unstable region. For Rayleigh numbers much bigger than critical
the convection excites gravity waves in the stable layer above the convec-
tion. However, it is possible that these waves are excited by a different
mechanism that is discussed by Cattaneo in this volume.

Most of the above workers have concentrsted on fixed temperature boundary
conditions. Here I will be concerned with the theory of large horizontal
scale convection that can occur using fixed flux boundary conditions. In
section 2 the marginal stability criterion is derived, and also an approxi-
mation to the exact solution that can be used to calculate the stability curve
for arbitrary boundary conditions for moderate large wave numbers. Section 3
looks at a nonlinear evolution equation near the critical Rayleigh number which
displays some of the behavior described from the experiments. The correction
to the evolution equation obtained at the next order is used to derive a recon-Jstituted equation that we hope is of wider applicability.
1. Equations

We consider the idealized situation as shown in Figure I where a fluid,
infinite in horizontal extent, is confined between two rigid ("sticky") plates

iI
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upon which fixed flux boundary conditions are now applied. The idealized
equation of state for the fluid is

where p , and To are absolute constants of the fluid, in water the
values .P = 1 Mgm/m 3 , o4 = 8.0xlO- 6 K-2 and To = 3.980 C give a rea-
sonably accurate prescription. Pose the temperature distribution

T = 9 + (z-d) + To, (2)

where P (z-d) + To is the static temperature distribution and 0 (x,y,z,t)
is the difference caused by the fluids motion. Thus, z = d corresponds to the
vertical position of the static density maximum, hence for 0 < z < d the
fluid is gravitationally unstable while for d < z < 0 it is stably strati-
fied.

On applying the Boussinesq approximation the equations of motion become

PL -

D§ = _ + W79 (3)

o9a L& Vs = ,. W OI a = L-1.

These equations are identical to those used for fluids with linear density
dependence on temperature except that the buoyancy term in the momentum
equation is here quadratic in 0 and the linear part has a z dependent
coefficient. In this work our attention is restricted to two-dimensional flow
and so we introduce the stream function hu  such that

The equations can be nondimensionalized by scaling the variables with respect
to the reference length d, the reference time d 2/e and the reference tempera-
ture 1 d .

Upon substituting the nondimensional quantities defined by
K 

'

the nonlinear equations become (after dropping the ^'s)

19 +. +

4. 4- K -2 .1 0.. 4-V 4,(.N,__ 4: )YJ 4

where the Prandtl number o- = V /K and the Rayleigh number of the flow is

R . (5)

The above Rayleigh number has exactly the same form as its normal definition,
the factor 2a 1 t is just the density gradient at the lower boundary.

Note that hy integrating the 0 equation over the whole fluid and using the
boundary conditions, it is easy to show that t<ooo where < > denote as usual
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the whole volume integral. Thus <C) must be a constant, without loss of
generality taken to be zero, and this provides an extra condition needed to
make the solutions of (4) unique.

2. Linear Marginal Stability

For all values of the parameters R, h, and a- there exists a simple
exact solution to the set of equations (4), that of no motion and no tempera-
ture gradient, that is

9 = 1= 0, * K,z,t.

However, for some values of the parameters the above solution is unstable to
linear perturbations. The aim of this section is to calculate the critical
values of the parameters at which the above solution loses its stability.

Take the linear part of equations (4) and separate the x,z and t

dependencies by assuming a form

0 (t)

The condition on R and (- as functions of h and a for marginal stability is

thatlt(n) = 0. However, we make the assumption, which appears to be consis-
tent, that n will be real and hence the criterion is just I = 0. Thus we get
the following eigenvalue problem for the critical Rayleigh number Rc as a
function of horizontal wave number a and the layer depth h,

(V2 _ a') = 9,C Z- 6(DI _=*) " = 0 (6

where D denotes * As usual the Prandtl number does not appear in this
stability problem. For some purposes it is convenient to combine the above
equations and just consider one equation for e , namely

(0-A39~ = p'10
(7)

The general solution of the above equation (excluding the boundary
conditions) can be written down in terms of the functions

* ~ ' ~~[(' +~ + (8)

j as
.

where the end points of the integration contours C_ are chosen to be two of
the seven complex seventh roots of + infinity. The solution (8) is obtained

by taking the Fourier (or Laplace) transform of equation (7) and solving that.
The integral in (8) is then the inverse transform. Observe that 6. satisfies
the differential equation

L
!
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Al, " '' - . o (9)

which is the cannonical differential equation for all linear problems in pene-
trative convection, in the same sense that the Airy functions are cannonical
functions for second order differential equations with a turning point. The
integral in (8) can be approximately evaluated by using the method of steepest
descent for large p . This is, in fact, equivalent to using the WKB method
to solve equation (9) except that the integral representation automatically
gives the connection across the various singularities in the approximations.
We now define six linearly independent basis functions a. as

eeo T +
h44=/T .~. -- " .. ab + .. ,

- b7r/7

3/ , . .,.

Using these definitions steepest descent approximations of the above Integrals
displays all the different asymptotic behaviors. For negative t: 1, and '0'
oscillate, algebraically decay and are out of phase; it, and V, oscillate,
exponentially grow and are out of phase; and 0,, and &I oscillate, expo-
nentially decay and are out of phase. For postive t: Tii, and V3 oscillate
out of phase and decay exponentially; %, has monotonic exponential decay;

Vs is monotonic exponential increasing; t and Z( oscillate out of
phase and grow exponentially.

Knowing these functions we could solve the linear stability problem (7)
exactly for arbitrary boundary conditions. Knowing the asymptotic form of the
functions we can solve equation (7) for moderate to large horizontal wave
number. However, here we are primarily interested in possible large horizontal1
scales and so leave the above problems for later study.

To look the marginal stability of long wave lengths we expand the unknowns
in powers of a2 , viz

+ +

Substituting these into the etgenvalue problem (6) and equating like powers in
a2 we obtain the following set of recursve equations

netal ea adaeoto phse Fo pive I~ll l an Illate'',
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~~~~ a = .o i(0) i

= ,'d ., _ - "at- , v. -b ,= (11

where quantities with negative subscripts are defined to be zero.

At any order n we solve the above equations by first choosing l¢c.-

such that equation (10) for Q. can be solved. This solvability condition
is just

as can be seen by integrating equation (10). We then solve the problem for e.
followed by solving equation (ii) for V, . The zeroth order solution is

The solvability condition at the next order gives Re to be

(.1 (12)

There are a number of features to note about this solution. The critical
Rayleigh number has the correct asymptotic form as the layer depth h becomes

small, where this problem reduces to the linear temperature dependence fixed
flux problem. The most interesting feature is that V$c,% 4 Go as h -, 2

and hence very long horizonal scales are only feasible for h < 2, for larger
h the motion must have a finite horizontal extent (at least linearly). It is

intersting to note that the negative values of p-e occurring for h ' 2
are physical if the density expansion coefficient ' is negative in which
case we have the reverse situation of a gravitationally unstable region lying
above a stable region. Also observe that for 5/3 < h < 2 there exists a
counter cell at the top of the fluid, in the region (5-2h) < z < h. For
stress free boundary conditions the above results stay much the same.

Equations (10) and (11) were solved for the next two orders and involved
calculating polynomials in z of up to the 19th degree with coefficients that
are rational functions of h. Higher order 9.s are chosen to be orthogonal to

So • The derived formulas for 14, and Re, are

3 o (2i1 Li 1 
- ?v4 %i + it##)

toot t"(owI),

(13)

observe that our expansion is not really in a but in ha/(l-h/2). The above
coefficients have a fairly simple behavior. Rc, is positive for o4 h e 1.6492
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and negative for 1.6492 e h < 2, while fc is positive for all o< h < 2.
Thus we conclude that the critical Rayleigh number versus horizontal wave
number curve looks like Figure 2. For h < 1.6492 long horizontal scales are

(a) (b) (c)

Rc Rc Rc

-> a 1-- -- a a

ochl 1.6492 1.6492 h 2 2< h

FIGURE 2

preferred, as h crosses 1.6492 there is a bifurcation of the preferred wave
number to finite values, while for h > 2 only finite wave numbers are
allowed. It is interesting to note that the critical h of 1.6492 is just
0.017 below the h at which a counter cell first appears.

3. Nonlinear Evolution Equations

We now turn to the behavior of nonlinear disturbances for Rayleigh numbers
near critical, in particular we are interested in the subcriticality of the
instability. We make a long horizontal scale assumption which, as was seen in
the previous section, restricts us to considering layer depths h < 2. The
following should be compared to the work in Depassier and Spiegel (1981) which
treats, in a similar manner, the effects on the motion of departures from
strict Boussinesq convection.

We assume that the motion takes place over long times on long horizontal
scales by introducing the scaling

where 6 is a small parameter. We then expand the unknowns in powers of 6'

9 e R.'. 9 4 ...

The leading order in * and i' is the two powers of 6 smaller than is
normally used. This has to be done in this problem to ensure that the leading
order evolution equation has fourth order derivative in . Substituting
the above expansions into the governing equations (4) we obtain the following
set of recursive equations

0", 0: at &vao h

(14)

( + (VI-
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where quantities with negative subscripts are defined to be zero. The above
set of equations are solved in a similar manner to marginal stability calcula-
tion but with modifications to allow for the nonlinearities and the depend-
encies on and r .

The zeroth order solution is

(0 2L

where -o is, as yet, an arbitrary function. At the second and higher
orders there is solvability condition from the & equation that the integral
of the right-hand side from z = 0 to h must be zero. At second order this
gives an equation for Ro which is, as before,

Ro
44 C, Ih)

At the fourth and higher orders the solvability condition gives evolution
equations for the functions -C(,v) introduced at the previous order in
the expression for e The fourth order solvability condition gives the
equation

where - - R2/Ro and the T i's are functions of h given in the appendix.

The above equation can be written, together with periodic boundary
conditions, as

T°r + K 4.f + .z 16)

where

K = N) /Zc.(I, X(.)

and k is some horizontal wave number in the long scale. This equation is
similar to the equation that Chapman and Proctor (1980) found for strict
Boussinesq fixed flux convection, but it omits the term ( . ),and instead
contains the term ( 42 ) which Depassier and Spiegel (1981) found to be
present when nonBoussinesq effects are considered. Note that the condition
4) - 0 is satisfied if we require that 4 = 0 is satisfied.

We now wish to investigate the solutions of equation (16). First, note
that there does not appear to be a simple Liapunov function for the system.
To look at the time evolution we consider that part of the parameter ( 4, k )
space where the behavior of 1° is near linear and can be described by an
expansion in some small parameter . Substituting the expansion

S

xi. +-

. SF1  r+.. ,

into equation (16) we find that

I
91 C.O. (4

At
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and r =

which gives the region in the parameter space near which this analysis is
valid. At the third order we find a solvability condition which gives the
Landau equation for A1 to be

, r 4. 0 2 A,3  (17)

From this equation we can easily see the expected results. For r2 less than
the critical r2,0 the no motion solution A1 = 0 is stable, while for
r > r2,0 it is unstable. Also, if h is less than 1.6492, K > 0 and for all
wave numbers k there is the unstable subcritical finite amplitude solution

A, -24r 2 2k 2(l-h/2) 2 K,

while for 1.6492 < h < 2 there is a stable supercritical finite amplitude
solution.

It is possible to find an exact steady solution to equation (16) in terms
of squares of the Jacobian elliptic functions. Substituting

= B + Acn2/ - , (18)

into equation (16) and requiring 4 = 0 we find, in terms of the elliptic
parameter m, that

A /2) K-" (19)

where k and E are the complete elliptic integrals of the first and second kind
respectively. Plotted in Figure 3 is the curve relating A2 and r2.
Taking a small m

A2  A2

r2  r2
k 2 K k 2 K

(a) h < 1.6492 (b) 1.6492 < h < 2

FIGURE 3.

approximation to the solution (19) we find that

A2 - 96k 2(l-h/2) 2K.(k 2K-r2), small A and (k
2K-r2); and

taking approximations for m close to 1 we find that

A2 w 9(l-h/2)2r2 , large A and r2.

For m near 1 (and h < 1.6492) a sketch of the velocities and temperature
structure in the horizontal is given in Figure 4. From the figure it can be
seen that the theoretical solution, even though it is an unstable one, agrees
qualitatively with the experimental observation (with fixed temperature
boundary conditions) that the vertical motion of the fluid occurs in a

...........................-.'.@
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J localized plume. This vertical motion can be understood easily by considering
that a wide ascending cold plume will create in the mean a more unstable
density gradient in the center, will then tend to accelerate further. On the
other hand a wide descending region of warm fluid creates a local density
distribution that is more stable and so the downward motion is confined to the
sides of the upward moving fluid.

h <1.6492

W

FIGURE 4

However, there is one glaring problem in the above exact solution; it is
infinitely subcritical t. Unlike the general case discussed by Depassier and
Spiegel (1981), who found a lower bound to the subcriticality, we have that
for any Rayleigh number less than critical the theory predicts the existence
of a finite amplitude solution; this appears to be clearly unphysical. In an
attempt to resolve this difficulty we look at a reconstituted evolution
equation.

To this end we derive the evolution equation for f2 from the solvability
condition at the sixth order, it is

where
d°=2"P$ -

and the V. 's and qo are defined in the appendix. To form the reconsti-
tuted equation we add equation (15) to C' time equation (20) after first
removing derivatives of fo in j higher than fourth by substituting from
equation (15). The equation is then written solely in f - fo + e 2f2
and r - 4 6"r4 adding higher order terms where necessary; this is the
reconstituted equation. It is convenient to remove the explicit C dependence
and write it in terms of the original variables e , .4 t and R to give

+ +(21)

where11Z
P: reI
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not to be confused with the density, and

-LI- ('P PP.
1P,p. Pj,~ .. , -

Note that the G(x,t) in equation (21) is not the same as the temperature
perturbation O(x,zt), they are related, correct to order 4 , by

9 (x,z,t) - 9(x,t) + Qo(z) OXX(X,t),

where Qo(z) is some calculable polynomial in z of seventh degree.

We now investigate the solutions of equation (21). Treating it exactly
like a full convection problem we first find the critical Rayleigh number
at which the purely conductive solution 9 - 0 loses its stability. Unlike
the full convection problem that it approximates in this problem we can find
exactly. Assuming f and x to be 0(1), 0 small and proportional to Ciax,
we find

(t3c% /Rtc')0o
d' e - - (N.1pe,)ea

This marginal stability curve is sketched in Figure 5. These curves must
be quantitatively correct for small a and PC , for larger a and there
is an interesting qualitative agreement with parts of Figure 2.

sP-

(a) h < 1.6492 (b) 1.6492 - h < 2

FIGURE 5

To find the steady solutions to the reconstituted equation (21) we can
integrate twice directly. Because the independent variable x does not appear
explicitly in the equation we then make the substitution ( () (d z)2
to give the first order equation

OP, + + t. *.,)Gl +~ 1(( 1 ,fl q A + pj~

where A Is an arbitrary constant of integration. The above equation can be
solved exactly to give the following first order differential equation for 6(x)

a.+°e ' ' A * , (22)
. . 4.8(1 !'
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where A and B are integration constants while b and c are given by

o 4 all

1 .

Note that the Prandtl number only appears in this problem through the
coefficient a, . Unfortunately lack of time prevented my obtaining the
solution of the above equation.

4. Remarks

We have considered an idealized problem in penetrative convection and have
calculated exactly the coefficients in the perturbation expansions based near
the critical Rayleigh number. This has been possible by the simplifications
ensuing from the long horizontal scale assumption allowed by the fixed flux
boundary condition. However, we have also derived an integral representation
of the exact solution to the linear problem for arbitrary boundary conditions.
This solution should be of use in more general linear penetrative convecting
problems as well as serving as a foundation for the general nonlinear theory.

For long horizontal scales we have discovered that the penetration has an
absolute upper limit of h = 2 (true for various velocity boundary conditions).
For rigid boundary conditions a finite wave number is preferred when h is
bigger than 1.6492 which is thus the true upper limit of penetration for rigid
boundaries.

The nonlinear analysis confirms once more the subcriticality of penetrative
convection and agrees qualitatively with experiments. However, the finite
amplitude solution does not "turn around" and become the stable subcritical
branch. In the start of an attempt to calculate this branch we have derived
the reconstituted equation and integrated it to obtain a fairly simple first
order equation which will have to be integrated numerically in further work.

I wish to thank Prof. E. A. Spiegel for proposing this problem and
providing many illuminating discussions at all stages of this work. Also I
thank Dr. W. Young for suggesting that I look for an integral solution and for
his many other comments. Finally, I wish to thank Barbara, my wife, for
drawing my graphs and Prof. W. Malkus and the Woods Hole Oceanographic
Institution for running the summer Geophysical Fluid Dynamics program and
Inviting me to participate.

APPENDIX

Listed here are the various coefficients that appear in the evolution
equations.

o +

I
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AN INSTABILITY OF GRAVITY WAVES

Fausto Cattaneo

ABSTRACT

The motion of a thin horizontal layer of inviscid fluid is studied. Linear
analysis shows that for certain thermal boundary conditions long gravity waves
are unstable provided the fluid is stably stratified. In the case of perfectly
conducting boundaries a variational calculation suggests that for a class of
temperature dependent thermal diffusivitles a similar result applies.

Motion of small but finite amplitude of these waves is studied and a Landau
type equation is derived.

INTRODUCT ION

Oscillatory motion is observed in a large number of situations of geophys-
ical and astrophysical interest. Some oscillations are driven by other types
of motion, like turbulence; other arise spontaneously as instabilities. It is
natural to ask in what sense are these instabilities a generic phenomenon.

In doubly diffusive convection (see Spiegel lectures, this volume)
the presence of potential energy stored in the salinity gradient or in the
magnetic field produces restoring forces that cause the fluid to develop
oscillatory instabilities. In general we expect that most mechanisms, capable
of storing and retrieving potential energy, will lead to overstability.

Another source of energy for the motion is the heat flux going through the
fluid. An astrophysical example is the , mechanism. The fluid possesses a
temperature dependent thermal diffusivity and this allows it to reduce the
heat flux and convert it into kinetic energy.

In this paper we investigate two cases where the conversion of heat flux
into kinetic energy could produce oscillatory motion. In Section 1 we study
the effect of imperfect boundary conditions on the stability of the static
solution. It is found, by a linear analysis, that in a stably stratified
fluid gravity waves become unstable.

4
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In section 2 we investigate the effects of variable thermal diffusivity on
the stability of a fluid between perfectly conducting boundaries. A varia-
tional calculation suggests that, for a class of fluids with temperature
dependent diffusivity, gravity waves are again unstable. In the last section
we return to the scenario of section 1 and consider motion of small but finite
amplitude. An asymptotic calculation gives that the amplitude and phase of the
oscillation obeys a Landau type equation. This correctly describes a Hopf
bifurcation of gravity modes from the static solution.

Section 1

We recall some elementary results of linear theory. In a stably stratified
fluid (entropy decreasing upward) with constant heat flux prescribed on the
boundary the static state is stable. Disturbances such as gravity waves decay
exponentially with time, at a rate proportional to the wave number, so that
the only marginal mode is a wave of infinite wave length. We want to study
whether this result is susceptible to small changes in these ideal boundary
conditions and in particular if there are cases where the static state becomes
unstable.

We consider a horizontal layer of inviscid fluid of thickness d, we assume
that the motion is two dimensional and described by the Boussinesq equations.
We also let the thermal diffusivity k depend on temperature. If z increases

upwardg and cp have their standard meaning and ' is the stream function
then the static solution is described by

As we have said linear theory shows that for A,.o and fixed flux T = Ts(z),
V- 0 is stable. We now alter the boundary conditions slightly. We choose
d as the unit of length, lpeL as the unit of temperature and d2 /K0
as the unit of time. (co is the static value of K at some reference point in
the fluid.) We consider infinitesimal perturbations of the static solution and
assume that the motions described, at least initially, by the linearized
equations. In dimensional form these are:

T-T 5 +, e

V Vt A ex (1)

OIL - ,= V. [ K(T) CT l (2)

where A is an inviscid version of the Rayleigh number and is given by:

4

( is the coefficient of thermal expansion). We expand the RHS of (2)
retaining linear terms only; we get

V K()i- I Y (K(, 9 ,. .. ', + Ke,'(7 ,, (3)

+ II . .. TS
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SEquations (1), (2), (3) are linear and separable; thus we seek solutions of
the form:

itA 11 (Pisin ax

t6(-) Cos ax) (4)

Substituting (4) into equations we obtain:

T-D-Aae (5)

0-9 - + (D 9 - a DK (6)

X i- k (T(*, 1T> *' (7r -D

rS

We now make precise what we mean by slightly changing the boundary conditions:
we assume that the static heat flux is prescribed on the boundary and demand

the perturbations to this flux to be of the order of some small parameter ic

This can be expressed as

(K79 + 9"D -a-- < (7)

where q+ and q- are constants measuring the relative weight of the pertur-
bation flux to the perturbation temperature (q+ and q- are related to the
Blot number). We also have that for rigid walls and inviscid fluid '+' = 0 at
z = 0,1. Treatment of fixed flux by Spiegel (see lecture) shows that the
equations are amenable to a long wave length approximation; accordingly we let

The scaled equations become:

V. +- e = (8)

We assume that Y and a have an asymptotic expansion in 6 and write:

(10)

We solve for the zeroth order

'D(K ko + 900=t--. l

(11)
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Equation (11), together with zeroth order boundary conditions give

. =- (13)

Order of 61 gives

P(&. X )-D' K 4 a + (14)

with B.C.'s (Ke + 2.0o (15)

Integrating (14) from top to bottom and using (15) we obtain an equation for a-.

+ q-(a' A fQ~ -- GA 1 <- (I 0
K 2 o(16)

where pointy brackets denote integration from 0 to 1 and

jm -+< "- k (o)

F and c are dimensionless constants related to the static temperature
distribution. For A< 0 and a layer heated from below we have

t. -c (17)

We see from (16) that the presence of Q alters the stability of the static
solution. In particular for S Q - 0 there is a marginal mode of finite wave
length X 1? and all the modes of larger wave length are overstable.

We can specialize our result to the case of constant diffusivity: K(z)
Ko constant. Then for q+-q- = q, f6<o

which shows that all modes of wave length greater than X, (X & I&
are unstable. So, if we consider a single mode of given wave number, we find
that it becomes overstable as A q is increased.

Hopf Bifurcation Diagram For Mode of, Wave Number a lil
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We now briefly reconsider the thermal boundary conditions used so far

and mention their physical meaning. The point is best made by con-

sidering equation (18). The stability criterion is derived assuming
6q > 0. This can only be achieved if at least one of the boundaries
behaves like a heat pump. For a system obeying Newton law of cooling

A q< 0 and the above analysis does not apply.

Section 2

We now turn to the case of perfectly conducting boundaries. Again linear
theory shows that for K. - o and J < o the static solution is stable and
disturbances decay exponentially with time. We ask whether this result
remains true when K is allowed to vary with temperature. We cannot adopt the
same technique as before, so we seek a variational equation for 0- . We
define the following euclidean space and linear operators:

V e C'.~ (o, e ), () . ;4 ( ) 'to)

with inner product C Mv) - 06v E VAV

Then equation (5) and (6) of section 1 are equivalent to

(T L + M V M- 0 v f VXV (2)

and if

(=,, v'q - ( M' ) (3)

Then it is easy to show that u is stationary with respect to independent
variations of 4,v provided that these satisfy:

(,7* t(4)

where L IL and

S((5)

We now have u = ,so we choose dual functions

01G'V; solve for P , and substitute into (3) thus obtaining an estimate

for .

We choose 0 s e and as before we let

(12-a"¢ a e (6)

Then I and W are given by

141
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Substituting (7) into (3) we get:

*t92 + r 4K 'i03 e (3 < C-D*?> + d<,$>P)e

(8)

Again we see that if -C' oK > > o there is a finite band of wave numbers

which become unstable just as in section 1 and the same conclusions apply.

Section 3

We continue by studying the finite amplitude development of the
instability described in section 1. We consider a mode near ac and follow
its nonlinear evolution. The equations are:

V V AG +.4 Tvl,)= (1)

19 + PIP, + 'l9) =Vle (2)

k - const

It is convenient to distinguish between integrals of even and odd
functions so we change the domain slightly. The boundary conditions are

4 0 a t 1/ 2 ( 3 )

Again, we consider small amplitude motion on large horizontal scales.
Thus we let:

Notice that we have introduced a fast time t and a slow time s; this is 0(3)
and not O( G 2). If the latter choice is made, the nonlinear terms do not
contribute to the amplitude equation which turns out to be linear. The scaled
equations are

+ ~~B1J) e1~-&G (4)

4-- i- 0(E 2 ) (5)

We now express the variables as asymptotic series in

+ .8 + .

e + is, ) Pe) + ...

+. (6)

II t it II
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We substitute (6) in (4) and (5) and obtain to zeroth order

90 0 =G)(,+ C

P 

(7)

(8)

b A S(9)

where P is a polynomial in z satisfying:

P"(z) = 1, P( 1/2) - 0.

We substitute (7), ( T ), in equation (4) and to 0( f ) we obtain:

which when integrated from -1/2 to 1/2 gives:

where p < (P> . Equation (11) and (9) describe the fast time behavior of
the waves; these satisfy:

It- (12)

which is a standard wave equation describing a wave travelling at speed c;
c 2 = Ap p. We write the solution to (12) as

A((x,-, % = ACs)eou (A t - )O- KtS (13)

APL ?, A[K " c A/' ()=-KI. (14)

We can then solve for V'4' and ell) explicitly.

e = ,V,' z (7 ,b, s) (16)

Q, M are polynomials in z, Of') is an arbitrary function and r and are
known functions of a , ", ' (see appendix for details).

The next order in s gives

"~ " 19* (17)
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- e-t - t Y ( 1 8 )

Integration from top to bottom and substitution for S(0 * ,

gives

(19)

Requirement that the RHS be nonresonant gives a wave equation for ®

Ot - (At 6) z o (20)

The LHS of (19) is a homogeneous equation for A and B. The requirement that
the determinant vanishes gives the marginality conditin for K.

Ea:o 'p 1) - )= 0' (21)

where q = <Q(z)> •

Again V (') and s") can be found explicitly in terms of known quantities
and polynomial in z. e( ) involves a new arbitrary function e"Nx,t,s).

The next order gives:

+ :( OS (0) - 9b

with B.C.'s

($) 6)(o ()
" - I - te (23)

We see that the slow time has appeared explicitly in (22) (it is also
present in N", ). Integrating (22) from -1/2 to +1/2 and using (23) gives
an equation for 0s in terms of its fast time and space derivatives. The
only nonlinear coupling contributing to this equation is

vo "%l-where = X

We can then project onto sin ( L t - gx) and cos( £. t -Kx) to get an
equation for A and B. Namely:

dAA 4 (91 + A49 + T~'

(24)

1- + ',A i (~A1  A'S I 'A)

Or in terms of a complex variable z = e A cos B I sin

(25)

4kI
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. [~ 6 . . +)s (Aj6 '~ ')-R

S4 CA I +8 f IL(26)

which we recognize as a Landau equation for a Hopf bifurcation The constant
term in (26) represents the frequency renormalization. (25) and (26)
describes the growth and nonlinear saturation of an oscillatory mode which is
a distance EA () away from the marginal mode given by (21).

JCONCLUSION
We see that boundary conditions and the thermal properties of the fluid,

for instance, its thermal diffusivity are crucial in determining the stability
of the static solution. Growing oscillations can occur In fluid even though

these are stably stratified. The mechanisms described In the previous
sections could provide a different outlook for the study of oscillatory motion
observed, for example, in the sun and in certain situations with liquid metals.

The boundary conditions used in sections 1 and 3 are correct for steady

convection between poorly conducting walls but need to be revised for time
dependent motion. A more realistic situation, and one probably ameanable to
experiment, would be to constrain the fluid between two slabs of finite con-
ductivity and prescribe the boundary conditions on these slabs. In this case
the value of the Blot number (q+ and q- in the notation of sections 1 and 3)
depends on time and the problem is somewhat richer.

Another interesting possibility would be to study in details the inter-
action between imperfect boundaries and temperature dependent conductivity.
This suggests the possibility of two simultaneous instabilities leading to a
co-dimension two bifurcation from the static solution.
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APPENDIX

where ( &) 1) - p o

A (-A ) - ; v-q.

where P Y(O,,s) P2

O( e* )

t. + 60 1M(. +

and < L>
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i Integration gives Eqn. (19) and (20).

l@)M + 1' (0 ( -["1IA

-pi tA p dx. = 0

but CS = = A cos(L t-Kx) + Bsin (.L t-ux).

Which gives:

A[-- .=- ' 31 SL 0

lC

A KP . + A[k~ y __

e, (L" le g fl~ f3)

+. Ist A -L rA4)~

where ft"() : L() ( - ) =

I,
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A. o -

+ (A

where -t?) (s t) o etc.

+C+ t 4- IT w' +- Ol"'v.'t ~

Integrating from -1/2 to 1/2 and projecting onto sin (_.at-kx) and cos CsLt- ' )

we get the coefficients oo ,

+ L.? ~

4 
5 ~- -P

where j ~ 1 z'> t.
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DOUBLE DIFFUSION IN A LONG BOX

Christopher Bretherton

ABSTRACT

We consider the generic problem of 2D thermohaline convection in a
stress-free box of infinite horizontal extent, and derive equations for the
spatially modulated roll amplitude in weak convection. Near the co-dimension
two bifurcation, all uniform roll patterns are unstable to nonlinear waves
which suck energy into right and left going roll packets. If, in this limit,
we go close to the Hopf bifurcation, these waves may be solitons whose
amplitude and velocity slowly are forced by dissipation to specific values.
Thus there is significant horizontal transport of energy on long scales by the
wa ves.

INTRODUCTION

In recent years, there has been renewed interest in the spatial structure
of large aspect ratio convection. Experiments (Gollub, 1981; Libchaber, 1981)
have shown that for most initial conditions, even In weak convection, that no
steady state is achieved, and instead persistent low frequency noise is
observed due to the slow rearrangement of roll patterns.

At the same time, there has been substantial work done on dynamically
degenerate systems between highly confining boundaries in which two or more
instability mechanisms are present (Guckenheimer, 1981; Arneodo, et al., in
press). Depending on the relative strengths of the instabilities, one of a
wide variety of behaviors may be seen. These reflect the behavior even when
parameters of the system (such as heat input) are changed drastically, so they
give a good qualitative feel for what is happening over a wide range of
parameters. The competing influence of a few instabilities can be crystallized
into a small number of normal forms whose bifurcation structure is known.

However, this approach has not been successfully applied to the geo-
physically important case of a horizontally unconfined fluid. In this case,
dissipation and instability mechanisms can be nearly balanced everywhere by a
myriad of convective patterns, while the small remaining energy goes into
modifying the pattern. I would like to show that this spatial degree of
freedom can drastically change the dynamics of a system with two nearly
marginal instabilities so as to cause nonlinear waves which can transport
substantial amounts of energy horizontally.

The situation we will study is thermohaline convection in a long, two-
dimensional box with stabilizing salt gradient counteracted by a destabilizing
heat gradient between stress-free boundaries. Depending on the two gradients,
two Instabilities may act to release the potential energy of the hot bottom.
There is a direct instability in which the fluid is unstably stratified, and
hot fluid moves up faster than its heat can diffuse away, and an oscillating

instability in which the same hot blob diffuses away its heat too fast and is
forced downward by its salinity. Since it is now cold it descends faster
than it rose, leading to an overstability. Turner (1973) contains a good
review of the physics.

The bifurcation diagram for rolls which are constrained to have a given
wave length N (with 0.= L""/k , where d is the container height) is shown
in Figure 1. At the point P in the diagram both the direct instability and

ek
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the overstability are neutrally damped, and the region in - around P
reflects in microcosm all the behavior shown in the diagram.

If we relax the constraint on ' and instead allow an infinite box in
which all roll wave lengths are permitted, we see three new effects. Firstly,
there is a most unstable wave number with L i. Qt= 2312 Imagine

that we are at a point Q near where this wave length becomes unstable. Nearby
wave lengths are more stable, and if we draw their behavior on Figure 1 for
a- = dc, we see it falls on the line , Each wave number o corresponds

to a point ( r, Iv- ), where

The convection may thus be trying to achieve disparate behaviors in regions
along the box where the local wave number is different, mixing up the
bifurcation picture of Figure 1.

' ~ 4 \ ( <v

FIGURE 1. The bifurcation diagram for thermohaline convection. The parameters
rT and rs are defined in terms of the Rayleigh numbers and the
roll wave number u by YZ i --

P is the co-dimension two bifurcation point, while R is the point at
which the bifurcation to steady convection reverses to subcritical.
If we fix RT and Rs while varying _ , rT and r. move up
along the line j. , reaching a maximum at the x. minimizing (1 x
and then they descend back along SL

Second, and just as important, the character of a Hopf bifurcation changes
in a long box. In a small container, we usually think of the oscillating
instability as a sloshing of fluid back and forth, effectively a standing
wave. In a long box, however, we must now think of two travelling roll waves
rapidly moving to the right or left (Figure 2).
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I

I a

FIGURE 2. a) In a narrow box the Hopf bifurcation leads to a sloshing of
fluid back and forth around the roll. The two small perturbations

,, are not there.
b) In a long box we get a right and left going roll wave. If they
are of equal amplitude there will be the standing wave of a), but
this is not generally the case.

Each wave has its own amplitude, and even if initially the two waves have
nearly equal amplitude, so that the behavior is similar to a standing wave,
nonlinear damping causes the larger wave to swallow the smaller. We have at
each point rapid transport of energy horizontally in whichever direction theJdominant wave is going.

Thirdly, nonlinear effects play a profound new role in the dynamics. In
addition to being an amplitude-dependent damping, nonlinearities act to
produce instabilities of the Hopf waves which cause their amplitude to
modulate, sucking in energy to feed locally stronger convection. No longer is
any single wave number preferred; instead a time-dependent combination of all
the unstable wave numbers can be expected, leading to low frequency noise.

I. The Amplitude Equations

So much for philosophy; let us proceed. In this section I will derive
amplitude equations for the sin - and sin a.-: normal modes of the velocity,
temperature, and salinity, using a combination of modal truncation (Veronis,
1965; Knobloch and Proctor, 1981) and slow spatial amplitude variation (Newell
and Whitehead, 1968) to get equations which recover the small amplitude
behavior of the system. We will specialize to the direct, Hopf, and then the
co-dimension two bifurcation.

1.1 Equations of Motion and Scaling

I ~ If we scale our problem with the box height d, the thermal diffusion time
_ "/,K , and the temperature and salinity difference 4T, AS, and assume we

have a Boussinesq fluid, we can introduce a streamfunction ' which

determines the nondimensional velocity v - (- * % ), and perturbations
1 , I of the temperature and salinity from the conduction state. In

these three variables, the equations of momentum, heat, and salt advection areiJ

i+

(I)|,

I I I I II1 . _ ~
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where

I L',Xi;a

V-
K.

The boundary conditions are that , , . are bounded as V-\..
and that the top and bottom plates are stress free, Isothermal, and isosaline:

The geometry is shown in Figure 3.

FIGURE 3. The Geometry of the Model

Now, we will rescale all variables so that they are small, and Fourier
expand \ , 0 , 1 . We will assume the supercriticality is O( iL ). so
the sin .'ir modes are O( E. ) and can have a local horizontal wave number
with 0( e- ) of , and thus can be represented as a slow spatial modulation
on a carrier wave " . Only the first two vertical harmonics are kept. We
now require some notation.

Wave number -._

Squared total wave number

Reduced Rayleigh numbers rX r[ 1  \-

Rayleigh numbers combinations q - ,

Long space scale V=

Time (scaled for convenience) -

x derivative of e mode

Laplacian correction -k. .)'

Useful constant s. A-0. t
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3 Modal expansions . 1 , I0 _ I Q-

E Oc- 'L%,\ l\O.-%7h' A-- UL\ -- ' 'h~ 4,

A_

(where "+(*)" means to add the complex conjugate).

For the mean fields A2 , C, E:

The method is patterned after Knobloch and Proctor, 1981). We Fourier

expand the thermohaline equations. To a given order in * , we need only
keep a few modes to find the evolution of the fields to that order. In par-

ticular, to find all fields through O (0) requires only sin-m'z and sin2ux
modes, so we "truncate" the Fourier expansions at that order to obtain modal
evolution equations. The reader uninterested in the details should skip to
the final equations (1.2.1-5) of this section.

Equation I, Q- sin vc z Md

-;~& ~ 9 EZ(- 3O i .. ;i

-

'T -- -I

1P.

Now AO t t so that we can eliminate many of these terms:

z ~ E .1 'v I

Ir C tI
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t' cA. Z zf

Equation I, sin2r.L mode

C"% ' ,

V..

Ignoring 0( - ) terms in the above, we see

At 0( '. ), a2 is damped by viscosity. Thus, after initial transients,
a2 = 0(0 ). So we can rescale

Using 3, we see

-~ tos %C. C 'Crr
Equation II, sin ct z mode
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IL

- .ct U 1 L e " "-7"

- OL

Equation I, sin2v, z mode

'- C,1

r c.

Equation III gives equations exactly analogous to the above two, except

with t in front of the diffusion terms. Collecting all our equations, we

get

The Modulated System

](1.1.1) : : - b, .'- ... -- N, %q (

(113 - n

(X V'N
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(1.1.4) ,\ -- '\ -  -~ ¢ o ' , K

whe re

N C. CN.i

1.3 Scalings of the Modulated System

Depending on how we scale the time dependence of the modal amplitudes, we
recover all of the small amplitude behavior of thermohaline convection. In
terms of a rescaled time t',

t' = k t Pitchfork bifurcation
t' = t Hopf bifurcation
t' = L t Co-dimension two bifurcation

In each of these successively more complex cases, we eliminate all the
modal amplitudes but "a" to a given power of b , following (Knobloch and
Proctor, 1981). We show the co-dimension one amplitude equations break down
as the second instebility is approached and then look at co-dimension two
itself. The reader who is bored by algebra need only look at the equations

and discussion after (1.3.2), (1.3.9-10), and (1.4.8).

t= 0( e ): The Direct Bifurcation

Suppose the mode amplitudes depend only on the very slow time T 4.
Then 0(l) the modulated equations imply

b = . . .%

d = : .

C = _A_..,

At O ( ), we find the form of the 0( t. ) corrections g, h, k, 1:

(1.2.2) ,

(1.2.4) .

Thus

so -

t

This gives the neutral linear stability line for the direct instability. We
could determine k,i. but this proves unnecessary. The 0(s,.-) balance now
gives equations for G and H.

I I I III I III I , I ,1
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j (1.2.2)*

Similarly
(1.2.4)*

so (1.2.1)4

.L 0o

(1. 3. 1) 4t IoZ- .iL 4

Refer to Figure 1. Along the pitchfork bifurcation below Q, -It Q. o1 0
and Q.,> 0 , and so the bifurcation is supercritical. The equation relaxes
into a time independent equilibrium state dependent on the initial conditions,
in which diffusion, which tries to make "a" uniform, becomes weak enough to be
counteracted by the nonlinear term, which pulls "a" out toward

Above to -P 0 but q,, 4 0 so the bifurcation becomes subcritical.
Every initial condition relaxes to a = 0 or blows up, because if "a" starts
growing the a2a* term augments its growth as it becomes larger. The only
nonzero equilibria are unstable. Near the co-dimension two bifurcation p, 3, .
becomes very small, so the relaxational effects begin to act much faster due
to the ability of the nearly marginal wave-like modes to propagate information
more rapidly. Above P the equation breaks down due to negative diffusion,
since it no longer represents a real bifurcation.

t - 0(l): The Hopf Bifurcation

The Hopf bifurcation is much more complicated than the direct bifurcation
- due to the two dispersive nonlinear wave trains in the problem. We must write

where 't = .t, not to be confused with the diffusivity ratio. This
corresponds to

Ai

II
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two travelling waves in 4 , with slowly varying amplitudes. In general our
equations will be structurally stable after considering terms at O( 0 ) in
the modal equations, so we solve for a to that order. Further terms do not
alter the qualitative bifurcation structure.

The 0(1) terms merely determine w. , as to this order we have a linear
set of homogeneous equations for a,b,c depending on '. *

It,- .Ce - %.

+ .. * 0 - 0

so

Require t.>. is a real frequency and separate real and imaginary parts:
i ~~(1. 3.2a) I ,. " ,r.I ,+ '+ )l

and(1.3.2b) W O - (r 4, .* Cr_) --,o- 0rL

so from (1.3.2)
(1 .3.3) r .. o'I & I-

which defines the Hopf bifurcation. Note 0 as - - near the
co-dimension two point P. To this order we have

- L G 4E\

The mean fields C and E must be expanded

'*' 0.t'4 L

From (1.2.3) and (1.2.5) we see

(1.3.4a) V;: ,C l \ ",

(1.34b)

Now we look at O( F) terms to find g + and h#.
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From (1.2.2)

-A- - Iu L % -

Similarly 
from 

(1.2.4)

To find C and H. we proceed to O( E
From (1.2.2)

-. X A Cc JAC4 'X 4 (E)

.' 0t.~ -c -, -c+,c, o

; - _ '. aI + , _ _ -. b+.,.l C,, + +

Similarly from (1.2.4)

Now we substitute the expressions for b in terms of a,g, C , and d in terms of
a,h,H into (1.2.1), keeping terms through O( c ). Define

We see

-- kV L t .

It pays to work in stages, going down successive powers of V • In fact,
reducing the 0(1) terms to functions of "a" alone,

I
IL a +L
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Due to the linear dispersion the 0(l) terms cancel. By use of the linear

frequency relations (1.3.2a-b) we see

so (1.3.5) Rol = - We can divide the

equation for "a" by F. and reduce the 0( 9- ) terms.

Now

but

so

and thus our "a" equation reads

or, combining the 0( t ) terms while expanding the 0( E ) terms,

-i iL II I i i t i i
,4 O L ~ ~ b'k % ~ _
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3N combines the nonlinear terms

(1.3.7) TJ -E -

Now, we remember (1.3.6) and write

Howe ye r,
(1.3.8)

~0

so

at

and

~ 4

and

- ~ ~ ~ ~ ~ i L.0..2 - 'bti" 43.__

Our equation for "a" simplifies to

U.. t

Thus we can write-
(1.3.9)

(XIL 2-12

IS
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( 1 .3 .1 0 ) V I t n t L f 0 , t

whe re

t4 V_ _ __ _ t I- L I !

(1.3.9) and (1.3.10) constitute the relaxational equations for the Hopf
bifurcation. There are three complications beyond the Van-der-Pol equation we
found for the pitchfork bifurcation. Firstly, the equations mix orders in E
To leading order they are linear uncoupled equations for the amplitudes ak of
the carrier waves. Now the amplitudes are pro agated along with group veloci-
ties ''%. which are . However, - = 0 at the critical wave
number so the dissipative effects act only at next order.

Secondly, at this next order they are two coupled equations. No longer
does one amplitude equation suffice to describe the dynamics, since each wave
feels the other wave's average amplitude as a damping.

Thirdly, the coefficients of F(a) are complex. The real parts represent
damping and instabiity terms, but these same terms also contribute frequency
shifts. In the limit %z 0 , when we approach the co-dimension two bifurca-
tion,

Now, in fact, 4 w 0 at the co-dimension two bifurcation, and
is O(b for finite a , so

Similarly, we see

~ A

so all the coefficients become purely imaginary and the equation becomes, evwi
to Ots- , conservative. We will explore a limit in the equations near the
co-dimenqion two bifurcation which allow exploration of this case to next
order, and will, in fact, produce slowly varying solitons.

4k
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I have not thoroughly explored this equation, which is probably typical of

a Hopf bifurcation in which horizontal waves are allowed. Some interesting
questions are: Is the state a+ - a- stable? Is the state of spatially
uniform amplitudes stable? Many of the results I discuss in the co-dimension
two case may, in fact, be primarily associated with the Hopf bifurcation,
although ironically they are easier to study when z. is small and we are near
the co-dimension two bifurcation.

1.4 The Equations in Co-dimension Two

If we let t.,s tt be the fastest time in the problem and solve for the
modal amplitude, we recover the co-dimension two bifurcation. As the above
discussion hints, we must go to 0(0. ) to get a structurally stable result.

Dominant Balance

- c.. + 0

b = Vo.. (since , t , the system is consistent)

d = L 4. o.,

E - L

and, using - - and dropping the stars on x,t, we see

! Lo

- -' * t~

Iterate Equation for b

I !UK

-ILILka: v)N1
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Lo'io 4 L &0-

(1.4.2) OL - O LO. L ~A~L~j

Similarly from (1.1.4)

(1.4.3)

4 4 0L.4 .A&:b L .L0 ..

where k and . are determined from (1.1.3) and (1.1.5)

(1.4.4) 0.. a!1 (~c ~ ~ 4~'

Similarly
(1.4.5) 5 tLQ

Equations (1.4.2) (with k as above) and (1.4.3) (with k as above) now can be
be substituted into (1.1.1) to find the Duffing equation for a. Write (1.1.1) in

Its component terms, dividing out a factor r,.

oo, .
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Expand the component terms in powers of L Factors like a, g, h, are

not expanded, but it is assumed that they are 0(l) with possible O( L ) EYz.
dependence as well:

I k~ \ b@V.%c~t- C
a "ILA

Ax to 'O

11.

_ - .- ,

W.- TI
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Qaj CL L' Q- _V o0c-q 06X

0i 7v

IA



- 218-

Add the boxed terms to get the final equation:

Ct~~\~~ Q'L 1% LI S

The zeroth order cancels, and the ax term (since Q02 - - ) is zero, sot)"
dividing by C :

4

where t k S\

Upon use of (1.4.6) we can write

so

We can rescale x . a = 2a, to get the equation in

normalized form. Dropping the asterisks on the new variables

(1.4.8) " - - Qc -o,

where

We find:

7..

4L, Z

Z -16
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I We remember T

Iso

similarly

and

This gives us the signs of all the ci's. Note that ci - C6 depend only

on er ,T and not on , The dependence on is seen only in

the linear terms through 
I and )i 

All of the linear terms in (13) have been checked against a direct Fourier

analysis of the original p.d.e's. All the purely time dependent terms have

been checked against (Knobloch and Proctor, 1981). The calculation of the
conservative terms was checked against an amplitude expansion. Thus, I have

some confidence in the correctness of the equation (14); only c3 and c 4
cannot be checked at all.

2 Waves in the Co-dimension Two Equation

In the second half of this report, we will go in more depth into the
solutions of the codimension two amplitude equation. The reason that we look

at this equation, which of the three amplitude equations is the one with the

smallest region of validity and contains the most complex physics is threefold.

First, it is a canonical equation. It is the simplest equation which

summarized both physical instabilities in a large aspect ratio context. As
such, it has a qualitative validity far beyond its formal limit. The only
important effect it misses is the stabilization of the subcritical direct
instability.

Perhaps more fascinating is the structure of the equation -- a nonlinear

wave equation in a strongly dissipative medium. The waves themselves are a

balance of forcing by buoyancy and dissipation by thermal and viscous dif-
fusion. The exact balance between the effects determines the average wave
energy. But in our equation the time scale of wave motion is fast compared to
energetic changes, which is very handy for analysis.

Lastly, the author found its logical precursor, the equation for the 11opf

bifurcation, while investigating co-dimension two, and therefore has not had
time to thoroughly investigate it.I

I/
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2.1 The Structure of the Amplitude Equation

First, I would like to rationalize the equation (1.4.8). For convenience
we write it again:

(2.1.1)

(2.1.2)

cI - c6 are positive constant depending on -,t . The parameters "i )
A are the unfolding parameters of the bifurcation, and depend on rl% and
r%)- I the O( r.) Rayleigh number corrections.

(2.1.3) 9

Q.

By changing I and - we can change the qualitative behavior of the
equation. Let's first ascribe a geometrical meaning t; them. Look at the
bifurcation diagram for x-independent solutions (waves at the most unstable
wave number), redrawn in Figure 4. Instead of using rT and r. as coor-

dinates of the diagram we can use , , which are linear combinations
of rT and rs . If we do so, = X = 0 is the co-dimension two
bifurcation, 7 - 0 is the pitchfork bifurcation, and 'A = 0 is the Hopf
bifurcation. We have thus found the natural unfolding parameters for the
bifurcation.

Now, let's try to understand (2.1.1) physically. With no x-dependence,
(2.1.1) with I > 0 is a soft spring. The restoring force is buoyancy. Over
half of the layer depth the mean field forced by the oscillating roll makes
conditions locally more favorable for a direct instability and strongly

reduces the restoring force, decreasing the spring constant at large

1**0

\,v ~ a \ .. / -' O -

FIGURE 4. The local structure of the bifurcation of rolls of the most un-
stable wave number. The unfolding coordinates I , ) are shown. As the
roll wave number is changed the position on the diagram moves along the
line . Point Q, where '- 0(l), IN = O( £ ), is where slowly varying
solitons will be investigated.
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amplitude. Letting the amplitude become x-dependent has two effects.
Dissipation acts more strongly on rolls not at the most unstable wave number,
so rapidly varying "a" increases the dissipation with terms like -ic6axx,:
in the small forcing f- F(a). But more directly, the effective spring
constant depends on the roll wave number, so changes in the x-dependence of a
cause the oscillations at different places to try to proceed at different
rates, causing one to lag behind the other and change the effective waveInumber, propagating the new oscillation frequency along in x. This is the
essential wave generating mechanism. I would like to indicate quantitatively
how the wave number dependence of the oscillation frequency comes about.
Suppose that for some x

(2.1.4) CL I - "

so locally

2.1.5) - e.

The variable x was a long space scale x* in the original thermohalint
equations, and

in the original x, scaled by the layer depth. Thus with 0. e.

and so describes a roll of slightly different wave number c' = o.\4 %'--
Now as discussed in the introduction, the bifurcation diagram varies with roll
wave number, because the parameters rT and rs vary with 4K

where - .1

so since o-"

Refer now to the bifurcation diagram of Figure 3. If (rT, rs), lies at

some point Q, (rT, rs)L,, , lies on the line connecting Q to rT - 0
rs = 0, call it i . Knowing oc' we find
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Thus the effective linear spring constant is
t )

just what comes out of the co-dimension two equation' At every point, Q.
is responding with its local effective roll wave number. Different wave
numbers have different frequencies, so phase lags, which cause wave
propagationdevelop. All the linear terms in fF(a) can be viewed in this
same way as wave number dependent damping. At this order the skewness of
f(a) becomes important and introduces terms such -ic6axxx which break the
x - x symmetry in the equation for 0.

2.2 Stability of Wave Solutions

In order to take advantage of the smallness of the dissipative terms of

the equation, we must find solutions or integrals of solutions which vary in a
known way over fast time scales, during which the forcing has not had time to
act. So first of all we look at the cubic Klein-Gordon equation without the

P_ F(a) term with an eye to finding conservation laws and stable explicit
solutions.

Two conservation laws can be found. They are of little help without
knowing more about the solutions, but can provide constraints on the slow
variation of parameters which describe known solutions. Multiply (2.1.1) by
a*T and aid its conjugate. Integrate with respect to x. If we define a
horizontal average

then we get an "energy" integral

(2.2.1) E

where

VXA u

'T
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We can multiply (2.1.1) by a* and add its conjugate. Averaging this gives

(2.2.2) 7 £. c4' :c.\, o. .

where

J is an average wave momentum flux. There are no other conserved quantities
on the fast time scale.

The study of periodic solutions of the cubic Klein-Gordon (CKG) equation
which forms the 0(l) behavior of (2.1.1) is more revealing. We look for
travelling wave solutions a(x-ct) of the CKG. There are two types of waves.
Waves with c < 1 (space-like waves) are violently unstable. Waves of c> 1 are
unstable to modulations which smear their wave number out. All uniform roll
patterns fall in this latter category and develop modulations on a wave length
inversely proportional to their amplitude.

First we examine space-like waves. Consider a wave travelling along at
speed c with c 2 4 1. Make a Lorentz transformation into the rest frame of

the wave.

This transformation leaves the wave operator invariant, so

If cRt is a travelling wave of speed c, then we can write

f.)

Then

where
(2.2.3)

(Figure 5a,b). Thus

and we have a two parameter class of travelling waves dependent on ,

By letting r2 - s we can solve for r in terms of elliptic functions.
However, while r is periodic, 0 will in general not be )unless the phase
changes by some rational fraction of 2- for each cycle of r. There are two
interesting limits of these waves. One is the case of 9.- 0, the cas -4
purely amplitude modulated waves of the most unstable wave length. The other
case is that of r - constant waves, which represent rolls of uniform amplitude1
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FIGURE 5. Potentials for Travelling Waves of
the Cubic Klein Gordon Equation (0 > 0)

but a different wave length translating along at speed c in the original
coordinates. Both of these solutions have perturbations which grow exponen-
tially and thus are not physically realized. This happens because these

solutions walk down a razor-blade between the destabilizing effect of the
direct instability, which causes "a" to run away to infinity, and the
stabilization of their high wave number, which makes each region in x try to
run in a different direction from its neighbors. Any perturbation which can

neutralize this second effect will lead to instability of the wave.

First we examine the J. - 0 case and look for solutions

in which is a small perturbation so the CKG equation can be linearized.
There is one subtlety. One must argue that stability of a solution bounded

in "S when s Is increased is equivalent to stability of a solution bounded in
x with t fixed. This can be argued by turning the equation into an integral
equation and integrating it along characteristic coordinates r, C= '-A t:N

If any initial condition on x remains pol.ynomial-bounded in x for all time,

then any initial condition on -T at t - 0 can be integrated back to give a
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polynomial-bounded initial condition on x at t = 0. If the T - 0 condition
blows up exponentially we have a contradiction to the assumption of stability
in TC .

Without loss of generality, R. may be taken as real, and we look at real
perturbations 4) • Then we get an elgenvalue problem for o-

(2.2.4) S

This is a Sturm-Liouville problem with a periodic potential, and so has an in-
creasing set of eigenvalues ', - - * with elgenvectors with YL
zero-crossings per period of .tL . (n = 0,1,2,...). However, one solution
of (2.2.4) is known. Since a solution C),'% can be moved a distance J% and
still be a solution of the CKG,

is a solution of (2.2.4). This solution has two zero-crossings per period
of T (3 if the energy E of the periodic solution is less than zero, so
(referring to Figure 4a) a period of is the same as a period of t,
and one zero crossing for E_ , 0, when q has half the period of c, • In
any case we may argue that there is A,=- ?- lO with an eigenvector with no
zero crossings, and thus there is a solution of (2.2.4) with V> 0 which grows
exponentially.

There is one exceptional case. At E = 0 the potential (2.2.3) allows a

solitary wave with

which can be solved to give

I.

However, in this case the stability equation

has a solution

so this solitary wave is also unstable, and thus the entire class of solutions
with c <1 , 1 = 0 is unstable.

We can also show solutions which represent modulation purely of the phase,

the r - constant solutions, are unstable. These solutions are

where 4

" I I I
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The linear stability 
equation

-C-

has a solution

which represents a slight uniform growth of the rolls, causing the subcritical
direct instability to allow further growth. Therefore, since these two limits
have Instabilities in their periodic solutions, It seems highly likely all of
the travelling waves with wave speed less than one are violently unstable.

So we turn to waves of speed greater than one in our search for a stable
wave train. These waves, it will turn out, are also unstable, now to sideband

instabilities in which the nonlinearity spreads the basic wave numbers into a
band of wave numbers, turning the uniform wave train into a modulated one.

All waves with c > 1 are "time-like" in the sense that we can make a
Lorentz transformation to a frame in which the wave is purely time dependent.
Make such a transformation

Since is less than one, the CKG remains invariant. The variable s t -

travels with the wave, so a wave of speed "c" is of the form , where

As before, let -. Then

where now
(2 .2 .5) - - -CC)

and VVt\ is shown (for 0 > ) in Figure 5c,d. For a typical wave, with
small "angular momentum", a plot of r and l is shown in Figure 6. Again an
exact solution in elliptic functions is possible but not edifying.

Physically, what happens to a uniform wave train is as follows: Imagine
that somehow the amplitude of "a" is increased at one spot. Locally "a"
behaves as if it were on a soft spring, so "a" gets delayed at this point.
This piles up waves behind the point while they get sparser ahead, which pumps
the energy of the faster moving higher wave number waves into the area faster
than the slow wave number, more sluggish waves ahead can pull it out. The net
energy influx further increases the local amplitude of "a".
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I
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I Figure 6. A typical solution of (2.2.5) for small * t.Le

Rapid jumps in the phase occur as the trajectory
flies by the origin.

!
I
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Mathematically, the analysis proceeds by the method of Chapter 14 of
(Whitham, 1973). In Chapters 14-15 he works out the modulational instability
of the 9 - 0 waves of the equation using a slowly varying Lagrangian (this
corresponds to f f - 1/4 in his formulation). Because the angular dependence
of ct causes its amplitude to be periodic but its phase to be quasiperiodic,
the method does not easily extend to I 0, except in the case of circular
orbits with constant r and

Since the instability involves waves of different speeds, we remember that

sa 3 U-k* in the original coordinates x and t, so

Again, larger "r" decreases the frequency, while larger k increases the energy
transport velocity c&(k), so again the sidebands grow.

The end result of such an instability is a modulated wave train (Figure 7)
in which the carrier wave moves at different speed from the envelope. Unless
"a" is small, both carrier and envelope have comparable wave lengths, impeding
analysis. If "a" is small, due to very small supercriticality, the carrier

FIGURE 7. The end result of modulational instablity on a wave of speed
is a modulated wave train. When seen in the frame in which the carrier
wave is a temporal oscillation, the picutre of (6) results.

wave becomes a sinusoidal oscillation in s modulated by an envelope of long
wave length in " . In particular, the envelope can be a solitary wave. The
separation of scales allows further analytic work, either by an extension of
the averaged Lagrangian approach given by section 15.5 of (Whitham, 1973) for
the I - 0 case or a direct perturbation expansion. The latter approach has
the advantage of allowing us to include the damping terms and the effects of
all modes ( 1 = 0 and 9.4 0) and can be done very neatly in this case.

2.3 Slowly Varying Solitons near the Hopf Bifurcation

Both the modulational equatios of 2.2 and the conservative equations we
found in the limit of to-0 of 1.3.9 point to a very interesting limit in
which analytic solution of the co-dimension two equations is possible. By
making *=OL.1 , point Q in Figure 4, we move very close to the Hopf bifurca-
tion, forcing us to rescale "a" - 0( ? ) and x - 0(',t) since now only very
long waves will not be damped under this scaling

v, 'A 6- OL Q



-229-

the codimension two equations become:

1

In deriving the equation (2.1.1) we neglected terms of O( 0*), so we might
question the validity of (2.3.1). However, the terms we neglected are
frequency corrections and damping-exciting terms. The latter are
((supercriticality)2) = O( EY) and the former are not of qualitative
importance. We will examine (2.3.1) with I fixed, which constrains rTZ
and rs.2 to lie on a line; writing Y = -8,+ ez again only introduces
frequency corrections to the solution and does not affect the qualitative
behavior. Write, to take care of the leading behavior

where

and S- 'T---  -t are slow times scaled in a convenient way.
At 0( z) we recover

(2.3.2) C,, f1 - 3. A, _

We have two nonlinear Schrodinger equations coupled by their amplitudes. If
one takes the Q -4O limit of the Hopf bifurcation and appropriately rescales,
the equations can also be recovered from it.

To usefully go to 0('%) it will help to have solutions of (2.3.2). The
easiest case, which proves to be very surprising, is to insist A be
independent of x, so we have two uniform waves of the most unstable wave
number travelling through one another as in Figure 2b. Then

(2.3.3) -tL,, - \,\ \, ,

whence, if we write

I A4= t

we find solutions when

I
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Now we must go to O( r6). We let p and q be functions of the very slow time
T - 2 0 t and find, by matching coefficients of "', that

-L & 2\%q 1:Zkh.XA' A - X, A,~-4

It is convenient to work with a four-vector

A

In terms of A the above equation can be written

(2.3.4)

where

0 U02 I 0.4ib 0

and \7
The operator L is self-adjoint with respect to a time averaging inner product

The dagger transposes and conjugates its vector, and the time c1 is assumed
to be small compared with a unit of the long time T. Since L is self-adjoint
we can find solvability conditions using the homogeneous solutions of L.
Remember L is the variation of the nonlinear Schrodinger equation, so the
difference of any two very close solutions to (2.3.3) is a solution Ah of
LAb - 0. The most general solution to 2.3.3 is

A-

[. 4%

A ii i II I |
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Since A+ and A- couple only through their amplitudes each phase can be
varied independently, so we find two homogeneous solutions

The condition that Al remain bounded, so boundary terms in an integration by
parts are negligible, is that

<~~( l Ilk 4X ~~ + boundary terms
- O

which gives two solvability conditions

(2.3.5) O -I

The two waves couple only to each other! In fact, the phase plane diagram
(Figure 8) shows that one wave always swallows the other and grows exponen-
tially unless p = q Initially. This contrasts with the perfectly well behaved
behavior in a finite box, in which reflection of waves off the wall keeps the
amplitudes from growing indefinitely by changing p's to q's, which can now
damp p's.

FIGURE 8. The bifurcation diagram for equations (2.3.5). p and q
are the slowly varying amplitudes of the travelling waves.

This behavior is very disturbing, since the bifurcation is supercritical
in a finite box. I will now argue it is misleading, because the states
p - 0 or q = 0 can easily be shown to be modulationally unstable, since the
equations (2.3.2) reduce to a single nonlinear Schrodinger equation in those
limits. Instead of a uniform state the equations break up into solitons and
radiation. Thus, what we should really study is a solitary wave solution to
see how it evolves.

Let us, however, take the suggestion of Figure 7 and study a solution in
which one wave is very small, while the other is a soliton. Thus at 0( t2)

very

Il i !| Ii _ II. .



- 232-

Look for solutions

(2.3.6) A - e %-'

Then if we let

we find v

v" can be shown to be neutrally stable to small perturbations. In a simi-

lar way as in the x-independent case we construct the third order problem irn

the rest frame of the soliton:

where now

a nd

Note that the problem is block diagonal. The dissipative terms do not

enter the equation for Al+ because we have assumed Ao+ = 0. A long way
from the soliton they cause AI+ to grow away from zero, but only on an O(Z )

time scale, too slow to affect the equilibration of the soliton. In fact

Look for solutions \ C and write X--t .The

There is a continuous spectrum with ' real and greater than - and

no discrete spectrum, so the growth rate c' must be imaginary and AI+

remains bounded on the fast time.
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j The equations for Al- can be written

(2.3.7) )

is the lower right 2x2 block of the matrix operator L, while RHS3 4 is
the bottom two columns of RHS. X is self-adjoint with respect to an inner
product

so we can again make use of solutions of 'I Ah =0 derived by varying the
soliton solution in its most general form

with respect to and . This gives us homogeneous solutions

and =tanh . .

The two solvability conditions are

or

~ ~ 4, C)

"A 'I

a nd 0

From these conditions we arrive at the evolution equations for the amplitude

and a velocity parameter, R -

(2.3.8) 24-

These equations give the slow variation of the soliton parameters. Their
phase portrait (Figure 9) shows they converge on a fixed point cc (3 >, ),
R = 0. All solitons will eventually attain the same amplitude and velocity.
A train of solitor.1 eventually turns into a uniform train of modulations which
transport energy at a speed '0c =I

II II IIIi I I I
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Note that no matter how wide the initial soliton it packs together. This
is a reassuring sign that the spatially independent solution is not the
preferred mode, and our amplitude runaway has been prohibited.

Rr

FIGURE 9. The phase plane diagram showing the slow evolution at
solitons. All solutions converge on a fixed amplitude
determined by the supercriticality and a velocity deter-
mined by their basic oscillation frequency.

2.4 Conclusions

We have seen wave dynamics are very important in a large aspect ratio box
when there is a wave-like instability that is activated. Uniform wave trains
break into wave packets which suck energy from their surroundings and quite
rapidly move it around.

There are many more investigations to be made in this model problem.
First, we would like to look at larger amplitude dynamics to see what takes
the place of the oscillating solitons of (2.3) and how it evolves. It would
pay to look at the interaction of right and left going waves to see if the
soliton collision behavior of the nonlinear Schrodinger solitons of 2.3 is
preserved. Most important is a statistical mechanics of the equations. What
is the soliton (or other coherent structure) "density" and do the solitons, or
radiation, account for most of the energy of the system? From such an
approach we could look at the horizontal mixing that such moving waves must
produce.

However, now the most important test is an experimental realization. The
instability of a uniform roll pattern and the resultant waves should be
detectable. But even without such verification, the model wave equation
derived represents intriguing new phenomena caused by the interaction of
dissipation, forcing, and waves in a nonlinear system.
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ON HORIZONTAL ADVECTION IN RAYLEIGH-BENARD CONVECTION

Satoru Honda

ABSTRACT

Simple experiments on horizontal advection of particles in Rayleigh-Benard
convection were executed. Supposing that this phenomenon is a diffusion-like
one as suggested by Malkus (1959), it is found that the mean square of the
distance from the initial position X2 is expressed as,

where K is the thermometric diffusivity of fluid, Ra is the Rayleigh number
and t is time. Possible implications of this result with regard to the mantle
convection are discussed. This shows that effective horizontal diffusion
constant is about 2xlO-3KRal/ 2 .

INTRODUCTION

Convection is undoubtedly an effective mixer of the interior of a fluid.
For example, it is known that, at high Rayleigh number, the temperature within
the convecting fluid is almost the same everywhere except in thin boundary
layers. It is generally believed that convection can break an initial inhomo-
geneity and make a uniform fluid within a short time. However, there is much
evidence that a slight density change caused by a compositonal difference
produces a layered structure in the convection (e.g., Turner, 1974; Richter
and McKenzie, 1981). Also, even if the fluid has a constant physical
property, the horizontal advection may be small compared to the vertical one
because of the existence of cell boundaries. If the flow is strictly laminar,
there is no horizontal advection. To answer this problem, we have done simple
experiments in which we observed the horizontal movement of particles in the
Rayleigh-Benard convection. We will firstly report the experimental procedure
and the results. Secondly, we will discuss an implication of results.

1A
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Experimental Procedure

The apparatus used in this study is shown in Figure 1. This is the same
one as Whitehead and Parsons (1978). The detailed description will be found
in their paper. We used Dow Corning 200 silicone oil as a working medium.

FIGURE 1. Sketch of the Experimental Apparatus.

The physical properties of the oil are: kinematic viscosity, V-- 10 cm2/sec,
thermal diffusivity K = 1.16 x 10-3 cm2/sec, thermal expansion coefficient

0(= 9.6x10-4 i/OC and Prandtl number Pr = 8.6 x 103. Rayleigh number Ra
is defined by

V K

where g is the gravitational acceleration, A T is a temperature difference
between the boundaries and d is the depth of the fluid. In this study, Ra is
chosen to be l.8x10 4 , 3.0xl05 and 5.5xi0 5 . Spacing d is selected to be
3 cm in the first case and 7.7 cm in other cases. Selection of a neutrally
buoyant particle, which we used as tracers, is the most difficult problem in
our study. We made them by mixing methylalcohol with water and dye. By this
method, we could make fairly buoyant particles with a large radius. However,
we found that some of the particles sank down after about 6 to 8 hours run
because of the small solubility of the alcohol to the silicone oil. All the
experiments were done with an uncontrolled initial flow. After the apparatus
had been held at the desired temperature for at least a few hours, particles
were introduced into the fluid. Observations were made by a shadowgraph
technique with time lapse movies. Movies were taken at the rate of about 6-8
sec/frame with 4000 frames, so that observations of about 7 to 10 hours were
possible. Movements of particles were monitored by reading the positions from
the movie after the end of experiments. The positions were defined by the
arbitrary selected x-y coordinate which was fixed to the screen.

RESULTS

Obtained results are summarized in Table 1 and several examples of
particle motion relative to the fixed coordinate are shown in Figures 2 and
3. The general flow patterns are spoke-like flow except for the case of Ra -
1.4xi04 which we will describe later. The particle motion is dominated by a
periodic motion as was Inferred easily. Occasionally particles go from the

Ii i tt Ill Ia,
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Ra 5.5 x 105 3.0 x 105 1.8 x 104

Dominant
periods* 0.011 0.014 0.13

C** (5 - 2)xlO - 3  (2 - l)x 10 - 3  <2 x 10 - 3

Rate of
transitions*** 10 4 0.4 - 0.8?****

* Normalized by the thermal diffusion time scale.

** See text.
*** This is a measure of the probability p which was discussed in the text.

Unit: l/thermal diffusion time.
** Assuming that one or two transitions occurred within about 7 hours.

TABLE 1. Summary of Experimental Results.

cell in which they have existed into another one (we will call this phenomenon
'transition'). The typical transition pattern is shown in Figure 4a.
Sometimes particles fail the transition and will go back to the nearly same
position of Figure 4. Some transitions cause a drastic change of X (which
represents the distance from the initial position). The frequency of the
transition is estimated from the movie and shown in Table 1. Dominant periods
which are clearly related to the turnover time of convection are calculated by
Figures 2 and 3 and by the direct measuring of movies. These values are in
agreement with the results of Whitehead and Parsons (1978). Now, we will
explain 'c' in Table 1. Malkus (1959) predicted that the mean square of X is
a function of the Rayleigh number and time shown as follows:

7i . a K "& t (1)

This is derived as follows: It is easily shown that, in the case of one-
dimensional random walk process, the mean square of the deviation from the
origin is proportional to the frequency n of changing direction.

D nd 2

If the horizontal advection in the Rayleigh-Benard convection can be regarded
as a random walk process, n must be proportional to where v

is the representative velocity of the convection. Malkus (1954) found experi-
mentally that the mean square velocity is proportional to the Rayleigh nuiber,
that is

Thus, he obtained (1) above.

We must comment on a physical meaning of c. Probably, c includes the
information of probability of transitions and the geometry of convection. The
probability p will be defined as the ratio of frequency of transitions to the
total frequency of meeting the boundaries. The geometry of convection will
affect the horizontal advection too (see later section). So c does not show a
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number but a Process. This implies that c may be dependent on Ra. In our

experiments, X2 was calculated by the mean of five particles for the case of
Ra - 5.5xi0 5 and four particles for the case of Ra = 3.0x10 5 . In reality,
bucause the periodic motion in a cell is the most dominant part compared to
the other slowly varying part, we choose X as the nearest position to the
initial position within almost a period. Accordingly, t has the uncertainty
of about one period. X - t relations of each particle and X2 - t relations
of the case Ra = 5.5x105 and 3.0x10 5 are shown in Figures 5 and 6. A
calculation of c was made by using Figure 6 and values obtained are listed in
Table I. However, because of small numbers of samples, these values may have
some uncertainties. To check the dependence of the number of sampling, we
tried to test by removing the samples one by one. These results are also
shown in Figure 6. According to these tests, we inferred that c is about 1 to
5xl0- 3 , but we think that more elaborated experiments must be needed. We

must give some comments on the case of Ra = 1.8x10 4 in which we estimated c
by a different method. It is known that the roll type convection is stable
until about 2x10 4 (Busse and Whitehead, 1974). In this case, we also
obtained the stable roll-like convection with wave number of about 3.7
normalized by depth d. It is found that there is essentially no advection in
the direction of the axes of rolls. Also, there are seldom transition of
particles between rolls, but a few particles change position from one cell to
another. So we estimated that X2 is almost the square of one cell size
within about 7 hours of test run. This estimate may give an upper limit of c
and we obtained as 2x10 3 which is in fairly good agreement with another
one. As a conclusion of our experiments, c is about 2x10- 3 within factor of
two, assuming that equation (1) is valid and c is constant. However, note
that, in this calculation, there is a basic assumption that the advection of
particles in Rayleigh-Benard convection can be explained as a diffusion-lIke
phenomenon. It is notable that the rate of transition seems to be
proportional to Rayleigh number instead of Ral/2 and that there is a
tendency of c to increase with Ra.

DISCUSSION AND IMPLICATION OF RESULTS WITH REGARD TO THE MANTLE CONVECTION

The horizontal advection of particles in the convection may be dominated
by four processes.

(1) quasiperiodic motion in a cell
(2) transition from one cell to another
(3) slowly deforming cell boundaries
(4) rapid oscillations

(1): This motion may be categorized into two parts; the motion which is
clearly related to the turnover time of the convection and the slowly varying
motion which is almost perpendicular to the former. Generally, transitions
occur when the particle moves almost along with the boundary. So the proba-
bility of the transition may be restricted by the second type of the motion.
The relation between two types of the motion is not clear at present because
of small amounts of data sets.

(2): It is noteworthy that, even if the transition occurs, it does not imply
the change of X. For example, see Figure 5. From this figure, we will find
that the number of transition is not proportional to X. The geometry of the
convection is certainly an important factor which controls the horizontal
advection. Whitehead and Parsons (1978) reported that, at high Rayleigh

number, a square pattern of the convection is stable. Because of its
regularity, the horizontal advection in the squared pattern may be smaller
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than in the spokes pattern that we have studied. Even in our study, we iound
that the advection along the axis of rolls is almost zero. That implies the
importance of the flow pattern. We must do more detailed experiments about

j this subject.

(3): (This may be related to (2)). Slowly deforming cell boundary was

reported by Krishnamurti (1970) and Whitehead and Parsons (1978).
Krishnamurti (1970) reported that the rate of the slowly deforming boundaries

is about an order of the thermal diffusion time scale. Unfortunately, in our
study, we could execute experiments only within a half of the thermal
diffusion time. So it is not clear what relation exists between the slowly
deforming cell boundaries and horizontal advection.

(4): It is well known that the convection begins to oscillate when the
Rayleigh number exceeds about 105 at high Prandtl number (Krishnamurti,
1970; Whitehead and Parsons, 1978). In our experiments, oscillations begin
clearly at Ra = 5.5xlO4 . It seems that this oscillation does not have a
major effect on the particle trajectory, but it is still uncertain.

Now, we will consider the possible implications of our results with regard
to mantle convection. Recent development in the field of the geochemistry
provides an evidence of the chemical heterogeneity in the mantle. Schilling
(1973) proposed the two reservoir model of basalt source regions (One is the
source region which can produce the Mid Oceanic Ridge Basalt and the other is
the one which can produce the Oceanic Island Basalt or 'hot spot' magma) by
the analysis of the chemical variation of the rocks observed between the
Iceland and Mid Atlantic Ridge. Recently, Wasserburg and De Paolo (1979)
proposed a chemically layered mantle based on the study of Nd and Sr. Based
on the simple mass conservation calculation of the various radiogenic
isotopes, O'Nions et al. (1979) and Jacobsen and Wasserburg (1979) showed that
only the small fraction of the mantle is associated with the creation of the
continental crust. These studies imply that the chemically isolated
reservoirs have existed for a long time through the earth history. Becau5;e
the diffusion constant of the isotopes is very small (order of 10- 5 to
10-15 c.g.s.; see Hofmann and Hart, 1978), solid-state mantle convection ,)f
which existence is evident is considered to be a main disturber of the
mantle. There arises a few recent works on this problem. For example,
Richter and Ribe (1975) pointed out that the convection deforms the initi;il
vertical inhomogeneity into thin spiral sheets, based on two dimensional
convection models. Honda (1981b) considered the same problem by includin ' the
effect of the heat generation, and suggested the importance of the distribution
of heat producing elements. On the viewpoint of the layered structure of the
earth (Wasserburg and De Paolo, 1979; Anderson, 1979; Richter and McKenzi,
(1981) and Honda (1981a) studied the layered convection. Richter and McKenzie
(1981) found by experiments that the layering of the convection breaks down
when the density difference between the two fluids is almost the same as that
produced by the thermal perturbation. However, note that these studies are

jall concentrated on the vertical mixing.
It is well known that MORBs have fairly uniform isotope ratios of Sr

(Hofmann and Hart, 1978). There are a number of mechanisms which could mi-

the MORB forming materials. The characteristic mixing length of molecular
diffusion can be estimated as Dt where D is a diffusion constant.
Supposing that the homogenization of MORBs is done only by the diffusion
throughout the whole earth history, we can get the characteristic length of
about 12 cm to 12 km which is very small compared to the characteristic length
of the Mid Ocean Ridge (about 10,000 km?). Our preliminary experiments sb ,w1

IIIh I1.-
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that the horizontal transpor: of particles in the Rayleigh-Bernard convection
is represented as:

Z x 10-  V t (2)

assuming that horizontal transport phenomena can be regarded as a diffusion.
(In the following discussions, we will assume that equation (2) is applicable
to large Rayleigh number convection.) The magnitude of the Rayleigh number of
the mantle convection is uncertain mainly because of the viscosity and depth
extent of the convection. If the convection is assumed to be confined within
the upper mantle, Ra is about 106 (McKenzie et al., 1974). On the contrary,
Ra is about 107, if the convection is whole mantle type. These estimates

show that the characteristic length of the horizontal mixing by the Rayleigh-
Benard convection throughout the whole history of the earth is about 920 km
(Ra = 106) or 1200 km (Ra = 107). These values are still an order of
magnitude smaller than the characteristic length of the Mid Oceanic Ridge. We
must seek another alternative to explain the homogeneity of MORB. There are
many differences between the mantle convection and the simple Rayleigh-Benard
convection. Probably, main differences are:

(1) Mantle convection is, more or less, heated within.
(2) The viscosity of the mantle may vary considerably because of its

temperature and pressure dependence.
(3) Mantle convection may be affected by the shear flow caused by the

plate motion.
(4) A possibility of the difference in the turbulent process between our

experiments and high Rayleigh number convection.

McKenzie et al. (1974) suggested by the simple two-dimensional calcu'a-
tions that the convection with the internal heat source appropriate to the
mantle is time dependent. Probably, time dependent nature of the convect Lon
will greatly affect the horizontal advection. Effects of variable viscotity
within the mantle on the horizontal advection are not clear. Yuen and Peltier
(1980) suggested that the lower thermal boundary layer becomes unstable aid
produces an upwelling because of the temperature pressure dependent visco ity.
This may affect the homogenization. However, for the present time, we h 'e no
image of the effect of the variable viscosity. The effect of the shear
produced by the plate movement was studied by Richter (1973) and Richter ind
Parsons (1975). They showed that small scale convection of which axes al gn
with the direction of the shear appears. This may give great effects on he

horizontal advection.

The plate kinematics demands that ridges are not fixed to the mantle.

Moving ridges and the large scale horizontal motions associated with platt
tectonics are probably good mixers of the upper mantle. Krishnamurti and
Howard (1981) showed that, over the Rayleigh number of about 106, the lai-e
horizontal scale motion with tilted plumes appears. Although their
experiments were done with small Prandtl number (Pf < 103), this may occur in
the mantle. These 'phase transition' may change c value by about an order.
In any case large scale tectonic motions would cause large values of c in I
similar way. Indeed, as described before, c seems to increase with RXo
There is one other trivial solution, that is, mantle is uniform at the staie
of the early history of the earth. Indeed, there are many workers who
considered that the earth was once totally melted because of the great
accretionary energy and, as a result, the earth had become chemically
stratified (Anderson, 1979).

at.
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3 CONCLUSIONS

It is shown that the horizontal advection in Rayleigh-Benard convection
may be expressed as follows by assuming that this phenomenon is a diffuson-

like process.

This shows the inefficient lateral mixing by small scale convection in t .'
mantle compared to the vertical one. However, we think that experiments were
still not extensive enough, and we must do the more detailed and system ic
experiments. We believe that such experiments will reveal the complex pLoces!
of the convection by a different angle. In any event, it appears that siall
scale mantle convection may not adequately mix the upper mantle.
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APPENDIX

Recently, Roberts (1979) analyzed the fast viscous Benard convection, and
proposed the relation between the velocity and Rayleigh number as follows:

K 24 (in the case of free-free boundari s)

i - R2  (in the case of rigid-rigid boundaries)

To check the velocity dependence on Rayleigh number, we tried to calculat- 7;;

Results are shown in Figure 7. Also c value was calculated by adopting above
relations, and results are shown in Table 2 and Figure 8. Probably it is
still premature to select above relations. Discussions described in the
latter half of this paper is still valid, even if we choose another relation
between the velocity and Rayleigh number.

Ra 5.5xi0 5  3.0x10 5  1.4 x 104

1/2* (5 - 2)xlO- 3  (2 l)xlO -3  <2xlO - I

2/3* (5 - 2)xlO - 4  (3 l)xlO
- 4  <4x10-4

3/5* (12 - 6)xlO- 4  (7 3)x10- 4  <7x10-4

* Shows the index of Ra.

TABLE 2.

I
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SPATIALLY VARYING PLAN-FORMS: PERPENDICULAR SYSTEMS OF ROLLS

Evan Fishbein

INTRODUCTION

Of the plan-forms which have been studied in Rayleigh-Benard convection,
most are periodic structures. Examples of these are the rolls and hexagons
discussed by Chandrasekhar (1961).

These plan-forms are idealized arrangements, which in physical systems art
observed only over short distances. In solid state physics defects are seen
which disrupt the large scale order of the crystal lattice. Correspondinr;
defects, at least visually, are observed in convection plan-forms. Three
types of these plan-form defects are pictured in the following diagram:

.......................... _

Grain Boundary Dislocation Point defect

There has been little study of defects in convection plan-forms. Siggia
and Zippelius (1981) have described dislocations analytically and numerically.
In this paper some analyttc calculations and experimental observations wil l be
discussed on the evolution of a grain boundary (henceforth abbreviated as bour-I dary) separating two regions in which the plan-form is almost periodic.

The boundary is straight and infinite in extent. In one region the rolls
have axes parallel to the boundary, while in the other they are perpendicilar.1 In either region, away from the boundary, the solution is equivalent to the
one given by Malkus and Veronis (1958) for rolls in an infinite layer.!
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Several questions which will be addressed are:

i) Is the boundary stable?
ii) If it is not, is one region preferred?
iii) How wide is the boundary in terms of how quickly do the amplitudes

decay?
iv) If it is unstable, what is the nature of the instability?

Analytical Results

Consider an infinite layer of high Prandtl number Boussinesq fluid heated
from below and having the previously described plan-form imposed at the onset
of convection. A section of the boundary is shown below. The X axis is along
the boundary, the Y axis is perpendicular to it in the horizontal plane, and
the Z axis is anti-parallel to gravity. The origin is chosen so as to make
the temperature-perturbation field an odd function in X. The boundary
conditions are free-free.

............

'" !

The dimensionless equations are

C'

. '741 + 20

- ~ ~-~' 4 ~.e)(2)

and have dimensions

length X=

velocity '
=

time tt =

-tem pe ra tu re 
"tA K - + .

where K~vo@ are the thermal diffusivity, kinematic viscosity and expansion
coefficients of the fluid, and g is the gravitational acceleration.
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I Performing a modal expansion, where both regions have rolls with wave
number o r/r, (the neutrally stable wave number at the critical Rayleigh
number ,. 2710 , the Rayleigh number, velocity and temperature perturbation

j are

, +. e lR

L& a eK L/ %CX CCx ON v~-(3)

K w~ ")

The indices K , and r are summed over the ranges

The amplitudes U , , Js and G are slowly varying
functions of r--= t, Y- 6 , as well as the fast parameter * To order e
the perpendicular rolls are given by

U:' (1C;Y) \,J"" (",Y) e (, ,Y')

with
S " ---o (4)

while the parallel rolls are characterized by

"' ,o, , y ) NI:' (Y,1 ,4) T," ,,,,

V"? 4 YcSo

with

I-, Y - * (5)

Substituting (3) into (1), one obtains

JJ

1 .1

4 ot IT 1

Liu .- . ,,. .
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where V kL

ry
YY

and L' L" n L n
2 and y are more complicated operators containing , y and

k . The right-hand side of (6) has an implied sum of over the even integers
from 0 to oo , but only terms when m = 0 or 2 enter into the calculation.
Terms containing y to any power do not enter into the calculation, hence on
the left only Lo is used.

The energy equation is

L(. N, 2 Q _,
j.o J ,- vo LLi -2 NY ,' RYJI (7)

where L - + R.

L4 k2')al R 2  1 + V' - (iu 6' - 3 0)YY 4 YYYY

The operators LI, L 3 , L4, L5, L6 do not enter the calculation, nor do
the terms on the right-hand side of (7). The terms N'jK" are obtained by ex-
panding i.8 in a Fourier series. Each of these terms is a series of all
products of velocity and temperature-perturbatlon gradient which are resonant
with cos vsaA sin r~ra and of order A . The terms of the series can be
obtained from the table below.

I-~~ ~~-*s.) ~V-Is) v') O _ _ _

V*%To, . ~, .,g. - -' I-, ' .-1 -- *, -l I - I ,

As an example, contribution~to N' arising from u, .'  , are ob-

tained from column 2 (n+k, r-' ) when h = 1, k o, r = 2, v = 1 and column 5(n-k, r- j ) when h - 1, k 0, r 2, V- 1 giving -Z V, 04,"

n = 1, k - 1, r = 2, 1 1 and is -21-G,"w. .

To obtain time dependence and diffusion in the order ez amplitude
requires that the G amplitudes be evaluated and some of the ' equations.
The non-trivial equations to order . obtained from (6) and (7) in terms of . ,

1 .0

DI)

(nk -v)whnh-1 =0 ,Y- iig- a ___' W
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3 are-

Vq 0 ( i :, 4)

W L %, + CS"I

IU, I e, (8)

The 62 equations are

= { , -e "_)°2+

f I o

(. -C2. I 0  
I

7 , r +

and the e3 equations of interest are

. . . y - - ,?_o,, - L.r ( 'LC ,,), c,,, o,

= -[, + lO1

The above two equations describe the lowest order perturbation on one
system of rolls from the other. The first new rescnance terms, which are not
present without the boundary are the { z terms which describe three
dimensional flow.

The amplitudes appearing in (10) are distinguishable without the indices,
which are now removed. The equations are symmetric in i and 9 in the
sense that by an appropriate shift of the origin along 9 , eLther variable
can be eliminated. Eliminating J , (4) and (5) give Rz:, .• Time inde-
pendent solutions to these equations were obtained by L. Howard. Trajectories
in phase space which contain the point T = 0, 1 - 1, tp - -- , lie on
the ellipsoidal cylinder

2 .

2 C73
473

i.#A
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and satisfy the equation

" -_( '') p+

Multiplying by T? , integrating so as to satisfy (5) taking the square root
and integrating over the appropriate branch, the solution is

-- " I _____ l lr -r -

Similarly, solutions which contain !F I, 6 0 lie on the plane

and satisfy

giving -

(12)

The constants, Y-. and y4 are chosen so that

or

Y_ o + 1- L -er. .2

16I I I (13)
4YO@ 0 'YO A03

The solutions, shown below

They are infinitely differentiable everywhere, except at Y' where 9 .F not
and T' is only twice so. While this does not create a problem In the e equa-
tion, in the 65 equations, the term )yyyYO(contained in L49 ) is un-
bounded, which implies that the perturbation series does not converse at
Yo. This problem Is avoided by allowing 9 to be a function of an inte:-
mediate length scale y - CV . The operatorsLi, L( are transformed by

? y -- y -- Vl 0-u

J

.- q ~Y

.. ... . ,.. , - -" : , ...o . ..._ .
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i so that the diffusion term in the old L4 ,

introduces -

into the new L2 giving the Newell and Whitehead (1969) equation

t -9 3 7je -- [te2 + (14)

By using (10) a solution could be found. Since this was the first term of a
perturbation series, the series diverges at Y, . In the neighborhood of Y.
a boundary layer convection, using the Newell-Whitehead equations could have
been performed to smooth out the kink. One still can conclude that a station-
ary transition zone (boundary) with thickness IA. exists, although its
stability has not been tested.

Experimental Observations

Some experiments on the evolution of a grain boundary were performed in a
high Prandtl number fluid. The procedure is described in detail in Chen and
Whitehead (1968). Briefly, a small lateral temperature field of the desired
pattern is induced on the surface of the fluid layer with a heat lamp while
the fluid is stably stratified. The mean horizontal temperature field is then
changed to make the fluid unstable. When convection begins, the cold areas
tend to form upwelling zones, while the warm become downwelling zones. The
induced temperature field is then allowed to relax (the heat lamp is turned
off) and the pattern evolves naturally. By the nature of the inducing
procedure, the induced field determines the location and orientation of the
roll axes, but not the amplitude of convection. Because of this, the
structure of the boundary does not correspond to the structure found in the
analytic solution, but is narrower.

The set-up is shown in Figure la during the inducement phase. The
inducing pattern rests on top of the tank. The shadowgraph technique is used
to visualize the flow; one of the mirrors used to bend the light path is seen
above the tank. The fluid was Dow-Corning 200 silicon oil, which has a
Prandtl number of 8,600 and a viscosity of 2 stokes. The rolls in both regions
initially had wave number o - 3.11, (the marginally stable mode at the
critical Rayleigh number for fixed-fixed isothermal boundary conditions,

Rc = 1708) the tank was 91 cm long parallel to the boundary and 89 cm long
perpendicular to it. The depth of the layer was 3 cm, giving a thermal
diffusion time of about 2.2 hours. The 'temperature at the top and bottom of
the layer were controlled by water baths separated from the fluid layer by
plate glass approximately .64 cm thick. At R = 10,000 about 20% of the
temperature difference between baths was across the glass, hence the top and

bottom surfaces were not exactly isothermal.

Three runs, two at R - 17,600 and the other at R - 9,000 were performed.
The evolution of one of the runs at R - 17,600 is pictured in Figure lb-d.
Five general observations can be made based on all three runs.I
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1) The boundary was unstable to finite perturbations. These were
attributed to the sidewalls of the tank and impurities in the fluid.

j 2) The instability led to one regime eroding the other.

3) Subcritical cross rolls of finite amplitude in the neighborhood of the
boundary played an important role in the erosion process.

J

4) The erosion evolved in two stages. The first was a period of growth for
the cross rolls (increase in the width of the boundary) with little
erosion. The second was a rapid erosion of one region by the other.
The transition from one stage to the other occurred cataclysmically.

5) The x-dependence of the instability could not be represented as a sum of
harmonics of the fundamental eea x •

For two of the runs, one at R = 17,600 and the other at R = 9,000, the

parallel rolls dominated. As has been observed by Gollub and Steinman (1981),
rolls which intersect a wall and whose axes are parallel to the wall are
partially replaced by "wall rolls". These have axes perpendicular to the wall
and typically extend only a short distance into the tank, depending on the
tank dimensions. These can be seen in Figure 4c; because of the geometry of
the initial state, wall rolls developed in the perpendicular roll region near
the boundary, but not on the parallel roll side of the boundary. The wall
roll closest to the boundary appeared to be driven by the rolls on the other
side of the boundary because this one grew faster than others further away.

Although the instability was initiated at the side walls, once established,
it seemed to grow faster the longer it became. This may have been because at
a later time the cross rolls were more established, or because its growth rate
was related to its amplitude which was related to its length.

The effect of increased Rayleigh number is not well established. It

appears that although instability was always characterized by initial adjust-
ment followed by cataclysmic erosion at the lower Rayleigh number this was less
extreme. At the higher Rayleigh number, during the period of initial adjust-
ment, the wave number decreased from 3.1 to 2.4. Since the number of perpen-
dicular rolls decreased from 16 to 11, it seems unlikely that this is explained
in terms of readjustment to fit within the box. If this effect took place at
the lower value of Rayleigh number, it was much less pronounced.

One of the runs at R = 17,600 ended with the perpendicular rolls domina-
ting. Unlike the previous runs, impurities in the region of perpendicular
rolls near the boundary, forced the boundary to bulge into the region of
parallel rolls. How this affected the mechanics is unclear; however, the
resulting time evolution closely paralleled the other two runs, in that it was
a two-stage process.

Conclusions

Based on the experiments, it seems likely that the analytic solution is an
unstable equilibrium plan-form. A conjecture is that during the initial
adjustment stage, the plan-form was evolving towards the equilibrium

* solution. The basis for this is that a thicker boundary is closer to the
equilibrium solution in phase space, provided the time rate of change in the
amplitudes are not too large. During the erosion stage, the plan-form is
evolving away from the equilibrium solution very rapidly.

tO
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Whether one region is preferred over the other cannot be concluded.
Although not enough experiments were made, it seems likely, and this is conjec-
ture, that neither region is preferred.

The width of the boundary was found analytically to be, at small Rayleigh
number, , where & is the amplitude of the temperature perturbation
at .o - The width could not be measured experimentally since it was
impossible to measure amplitudes as a function of position. One method might
have been to use the width of the cross roll region. This does not really
answer the question of whether the experimental plan-form corresponds to the
analytical solution.

4

The exact method by which one region replaces the other is unknown, except
that cross rolls play an important role. This suggests that the quantity
R-Rc, (Rc is the critical Rayleigh number for the onset of cross rolls
given by Busse, 1967 as 22,600) might be an important parameter characterizing
the rate at which the boundary grows.

More experiments need to be performed for many different Rayleigh
numbers. Obtaining the amplitude as a function of distance again would be
helpful in answering how the plan-form evolves. A particular problem with the
experiments was the asymmetry of wall roll formation across the boundary. A
more symmetric experiment would have the boundary along a tank diagonal.
Finally, the plan-form evolves so slowly, that a shorter vertical diffusion
time is needed if many runs are to be performed.

The analytic results need to be extended. Previously mentioned, a
boundary correcti6n to smooth e around Y. should be performed. The
calculation should also be generalized to rolls with arbitrary wave number
since the experiments indicate a smaller wave nmumber is preferred at higher
Rayleigh number. A stability analysis also needs to be performed; the

experiments indicate that the phase portrait around the solution is very
complicated and certainly the study of imperfect plan-forms is rich in new
phenomena.
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SPIN-UP PROBLEM WITH A RADIAL CHANNEL ON THE BOTTOM

Bruce D. Long, Jr.

1. A Geophysical Motivation

Why a radial channel on the bottom? This variation on the ordinary
spin-up problem is motivated in part by a problem from physical oceanogr,,phy
-- that of coastal upwelling. In the usual two-dimensional steady-state
formulation we consider a stratified ocean of uniform undisturbed depth H
bounded laterally by a coast and driven by a uniform longshore wind stress
(Fig. 1). The wind stress causes a transport of light surface water within a
thin Ekman layer away from the coast, and to conserve mass an upwelling of
heavier water must occur at the coast. A shorewards transport in a bottom

Ekman layer and a slow pumping of fluid from the surface Ekman layer into the
int--ior closes the circulation. This secondary circulation requires the sea
surface to slope upwards in the seaward direction and thus engenders a
longshore geostrophic current in the direction of the applied wind stress

1000

. W 1;--~..

FIGURE I.

The flow in the bottom Ekian layer represents a balance between the hori-
zontal pressure gradient, the Coriolis acceleration, and bottom friction. If
we could somehow "turn-off" the Coriolis acceleration, the bottom flow could
run down the pressure gradient and the increased shoreward transport in turn
could lead to enhanced upwelling. One way to realize such a situation is to
introduce some variation in the bottom topography in the third, hitherto
suppressed direction. A submarine canyon trending perpendicularly to the
coast whose width is smaller than the internal Rossb; radius of deformation

RfD 4F"l/ where g' is the reduced gravity (g' - '- 5H ) and f is the
Coriolis parameter, removes the rotational constraint on the shoreward leg of

the secondary circulation cell and allows a larger transport through the
cell. This should lead to relatively more intense upwelllng at the head of
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the canyon. The introduction of a localized regime where a large ageostriphi,-
transport can occur should have a dramatic effect on fluid systems which
depend critically on secondary circulations. One such system is that
considered in the spin-up problem.

2. The Spin-up Problem

The spin-up problem for a rotating homogeneous fluid can be posed as
follows: A cylinder containing a viscous fluid initially in a state of olid
body rotation about a vertical axis with angular velocity .A2- bS11 has its
rotation rate suddenly increased to -f . How does the fluid come to a new
state of solid body rotation and what is the characteristic time for this to
occur? Greenspan and Howard (1963) show that for a fluid bounded at top and
bottom by solid impervious walls the characteristic time for the new sta e to
be reached -- the so-called spin-up time -- is given by the geometric mei l of
the diffusive time scale L2 /v and the inverse of the rotation rate I/. ,
where L is the half-height of the container and v is the kinematic viscosity
of the fluid. Defining the Ekman number E = v /L2 _ , the spin-up time
can be written as T - -c--IE-1/2. The physical mechanism for spin-up
involves a secondary circulation set up within the fluid, which enables tie
fluid to reach its new state much faster than it would if viscous diffusion of
vorticity alone were acting. In a time of order Sfl "' Ekman layers are
established on the horizontal boundaries, which suck fluid in from the
essentially inviscid interior as fluid within the layers is forced outwards by
the increased centrifugal force. To conserve mass these must be a slow inward
flow in the interior. A parcel of fluid in this inviscid domain conservw its
angular momentum and thus increases its angular velocity as it drifts inward.
This leads to the eventual spin-up of the interior. It is apparent that -ny
mechanism allowing a faster secondary circulation of the fluid, i.e., a
stronger radial flow, should lead to a faster spin-up. One possibility is to
replace the impervious horizontal plates with a permeable medium (Kroll and
Veronis, 1970). Here we will consider the effect of having a single narrow
radial channel on the bottom. The width of the channel is of the order
LEI /2 , which insures that the horizontal flow through it will be essentially
radial, and will represent a balance between the radial pressure gradient and
lateral friction -- the rotational constraint is removed and the radial flow
can be quite large down the channel. This increased radial flow also
increases the downward suction of fluid from the interior and should lead to a
faster spin-up. Because the character of the bottom is no longer axially
symmetric we expect the interior flow to exhibit contributions from zonal wave
numbers other than the simple wave number zero zonal flow in the "classicml"
spin-up problem.

A somewhat idealized model is developed which predicts that the channcl
does indeed decrease the spin-up time, with greater efficacy for faster
rotation rates. In this elementary analysis the effect of the presence o
higher wave numbers on the spin-up time is considered negligible. A seriE; of
experiments whose parameter range rather imperfectly matches that of the theory
will then be examined, with good qualitative and acceptable quantitative gree-
ment with the model. First some theory.

Theoretical Model

Consider a configuration as shown in Figure 2. A cylinder of fluid of
half-height L bounded by impervious walls rotates with constant angular
velocity 12.. A-.. A "wedge" centered at = 0 is cut out of the bot om

a
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3 which subtends an angle (small'.) of 9, and has a thickness h. We require
e.L/ ,4 . At time t = 0 the angular velocity of the container is Instan-
taneously increased to SL . We seek an approximate solution for the time-
dependent motion of the fluid. The procedure closely follows that of Kroll
and Veronis (1970) but here we cannot assume axial symmetry and must keep
terms in "A •

II

(11,

FIGURE 2.

The full equations of motion in cylindrical coordinates r, e , z for a frame
moving at the new rotation rate (see, e.g., Batchelor, 1967) are, in non-
dimensional form:

+ u-.j 4- . b '. - Vr - 2'v - + -E Uz~
(1)

3 4 I + k (2)
(L , j + + + +2

+ 6 (LAW (3

IV ++

jIVrV (4)

where q( -4- ( - .))+ - .' L)
Dr- 6- (.))

Here u, v, and w are the radial, azimuthal, and vertical components of
velocity respectively, and the centrifugal and gravitational forces (potential
forces) are absorbed in the pressure term p. Velocity has been scaled as 6,n L,
time by -O." , length by L, and rressure by pLA( S.L) The nondimensional
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parameters C and E are the Rossby number (4-2./_L ) and the Ekman number

P-7 L-2. respectively.

In order to proceed any further we must make a number of assumptions. We
will first of all assume that the channel is so narrow that flow in the radial
direction behaves essentially like that in a permeable medium or Hele-Shaw
cell, i.e., it obeys Darcy's law.

Using the same nondimensionalization we have for the channel

(5)

where N = kSL /V = kL- 2E-1 and k is the permeability. Just exactly what
the permeability for our channel of non-constant width should be we leave as
an open question for now. By ignoring the variation in width with r we
introduce a hopefully not too serious flaw in our model that greatly simplifies
the further development. We naturally keep C sufficiently small that the
problem reduces to a linear one. We also consider the flow to have a boundary-
layer character, i.e., that the dependent variables outside the channel can be

split into an interior and boundary layer part (e.g., u.= -T. +C-

where a vanishes as we leave the boundary layer). This requires that with-

in the boundary layers at z = t 1 we have a/6? = -; S-, ?/, , where V[C
is of order one. The sidewall boundary layer is ignored since it only has an
effect within the viscous time scale L2/v >> T. Since we expect the change
in spin-up time not to be excessively dramatic, we assume that T is of order
S-' G'l- as in the ordinary problem and write

5 F_ ;

where again P/2c is of order one.

We progress by solving for the interior and boundary layer flows and
matching them to the boundary conditions and to the bottom channel flow. For
the interior we now have:

2.

vi - 6L z- L" + ' 2G
2' 2-E

+- C CV. __

(6)

sit,,,_

+ - +L

4 j~v 3 --
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For the boundary layer at z j l we have

4- -+ 2t + 4 +
r 69 E. re' rP D&

EW -L 0-i- (7)

( increases positive upwards at z = 1 and positive downwards at z = +1.)

To solve this set of equations we will employ a series expansion in powers
of the small quantity El/ 2 and equate like powers of El/ 2. For example

00 "

Plugging the expansions into (6) and (7) we obtain

Interior

EO:

(8)

E1/2:

+ U. (9)

Boundary layer at Z -1:'

E-1/2: _ (90)

!-
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E°: - + .

" .,-;._L o(11)I

The set (9) implies that there is no vertical shear on the order zero velocity

components

In particular we note that V- J

Cross-differentiating the horizontal momentum equations in (9) and using the

continuity equation we obtain the vorticity equation:

it- DL

jt j - - w - (12)

Substituting in the geostrophic relations from (8) we get an equation relating Ithe pressure to the interior vertical velocity at the boundaries.

a j y. i. _L '' I = (13)

The boundary layer equations (10) imply that Po and Wo equal zero, since

all boundary layer quantitatives must vanish as -- . The Ekman layer

equations (11) have the solution

IA. 3A (, .) c0S os +B 4 ,. ;

- (14)

where + or - indicate top or bottom boundary layer respectively, and integra-

ting the continuity equation from z - 0 to c we have

(A'+ I II (15)
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On the bottom away from the channel we require that u and v vanish:

W #o etc.

3 Setting 0 - in (14) we get

B - -V- I i u= \%

bottom, away from channeli
but since ur. and v.. do not vary with height

I A- = A+, B- = B+ away from channel

Over the channel the top boundary condition remains unchanged

top, over channel

B+ =vz

but on the bottom we match u in the channel and in the free fluidI

which yields

A- = ( 1U,

bottom, over channel

Substituting these values of A and B into (15) and rewriting in terms of the
1 pressure we get, away from channel:

Ir -L 1 (16)

Ovr hecanel,
Over the channel _,o remains unchanged, while

-L 5a Pat) -LV (17)

+ 'i
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It is now time to solve for uc and wc . From (5) uc Is given by

Integrating the last of (5) from z-- (1 + to z -- , using 0, and I
requiring wc - 0 at z -(1 + ! ) yields

L

L(18)

We also match the radial pressure gradient at z - -1 J

An equation in terms of ?I, alone is now obtained by matching the vertical
velocities at the boundaries. Away from the channel:

(19)

I; m 2(W-. .4

Subtracting and using ~ j gives

\ , i., - ,..= -( i: lo- I I
. J t(20)

Thus using this result in (13)

(- + [I "O-)T, rV r r a

away from channel (21)

Over the channel: 4

+ U



-267-

j Subtracting

- - "

I Again substituting into (13)

IP U__ -g I + )- (22)

To combine (21) and (22) into one equation we employ the Heaviside step func-
tion H( O ) and write

MIZ elk" (23)

In an attempt to solve (23) we expand P~oin a Fourier series (and drop the
irksome subscript for now) as

k.-GO T(24)

and get

Se'o [H 14~ 14 +N 4 - (25

Now mulitply both sides by e-ilO, integrate from 0 to 2iT , and use the
orthogonality of the expansion functions to find

(26)

-. LE

I
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To simplify things a bit we take the limit of small 0. , where sin[(k-.i'
(A,)- __ (we reach the same Juncture by replacing the combination of step
functionswith a delta function of amplitude 19. at the onset). Then

- (27)

The term on the right-hand side involves a coupling of all wave numbers -- it j
appears we have a rather hopeless equation. But since at T - 0 only wave
number zero is excited, it seems reasonable to ignore the other wave numbers
in the sum, solve the resulting (easy) equation for Po, and check the
adequacy of our bold maneuver later. Sweeping it under the rug for now we have

~ 4 a~g~(28)

which has the solution

o o. .(29)

I
where qo is an arbitrary function of r. The solution which fits the Initial
condition that vz. - -r at t =0 is

p. - CWi ( ) -C A (30)

I
where otl is a constant and

Since in taking a zonal average only the po term remains in p = , I
the zonally averaged azimuthal velocity (denoted by an overbar) is given by

V. r C - ) V (31)

In dimensional terms

A~re - -eli;(32)
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5 Iand we see that the spin-up time for the zonally averaged flow is

i
T =(33)

S1 . It + "--r ( ,

It is heartening to see that this result could have been obtained from the
permeable medium result of Kroll and Veronis by multiplying their N by the
ratio of the area of the channel to that of the bottom of the cylinder ./zr
The channel decreases the spin-up time as compared to the ordinary Ekman spin-
up case. But was it legitimate to ignore all higher wave numbers in the right-
hand side of (27)?

Using our result for po (and still ignoring higher wave numbers) we have
from (27):

-1 4Y -( Ye
Dr 'L F - ~(34)

Letting p =1(r) S,( r ) and using the usual tricks of separation of
variables L

.e(35)

- ,(36)

where m is the separation constant. The solution to (35) satisfying p - 0
at t - 0 for )- 0 is

±T- (I -

Equation (36) has the general solution

L -L .
IL'Y 4 __2

tt - ;.

where oil and are constants. To avoid a blow-up at the origin we
require p' -0 for A>o and . zo for -<o • Thus we have (,L* o )
(making L positive)

:~(. rp,, % t + r2',. 4 ,e'+6 -4-" 7-.

(37)

h.- , -rL r&, .) + -Yr)te=(

Am
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The constants -(j must be determined from consideration of the sidewall
boundary layer - a task we leave for a later date. What we are interested in
is whether pt remains small compared to ?. for a time Z '(t+f) "  , which
would validate our method of obtaining T. The ratio p. to f. can be written

The unknown function FCf) is hopefully no larger than order one. Thus at most
at T 6

L_ e'4  yal ~?. I
In the experiments Y was on the order of .25, so our estimate of T should be
reasonably good, if we can trust this rather shaky argument, although the
interesting development of the higher wave numbers in the flow remains as of
now unexplored.

Experimental Method

A series of experiments was conducted in a cylindrical plexiglass tank
with a rigid top of inside diameter 29.3 cm. A disk of thickness 1.23 was
placed at the bottom. The disk had a thin wedge cut out of it. Ideally the
resulting channel would have radial walls, but due to the finite width of a
bandsaw blade this state is only approximatmely reached. The nominal value of I

S1, for the wedge is 0.034 radians. With the disk in place the half-height

of the tank was 4.50 cm. The apparatus was placed on a rotating table spun
counterclockwise with a movie camera mounted above in the table frame. The
angular velocity of the table could be determined to an accuracy of 0.OS -1.

A thymol blue indicator solution was used for the working fluid, with a
kinematic viscosity at 230C of about .96 x i0-2cm2S-1 . The indicator !
solution is used in the method of flow visualization (Baker, 1966). It is
yellowish when acidic and deep blue when basic. The fluid is titrated until
it is slightly acidic. Conducting wires connected to the positive terminal of
a DC power supply are stretched across the cylinder in a pattern shown in
Figure 3. A negative lead enters the fluid at the top center of the tank.
When the power supply is turned on the fluid around the positive wires turns
blue, forming a neutrally buoyant tracer. One wire crosses just above the
channel in order to see what sort of radial flow the channel induces. The
criss-crossed wires allow some measure of the zonally averaged azimuthal
flow. By measuring the angle +' between the tracer lines and the wire lines I
as a function of time after the angular velocity is increased by AQl we can

obtain a measure of the spin-up time of the zonally averaged azimuthal flow.
For we can rewrite (31) as

Jr - (38)

Integrating this from t -0 to t t we get

-t/r((T, a 51S~t- (39)
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As t we get the final angle subtended by the tracer lines

* final A "IL (40)

tcop -tieji o~ r~f

FIGURE 3.

Thus by measuring the average value of the four central angles as a

function of time we can compare experiment with theory. Several runs were
made with different values of--A and 4-"L . As a check of the apparatus some

control runs were done with the channel either filled with putty or covered by
cellophane tape of a thickness less than that of an Ekman layer.

Experimental Results

Figure 4 shows a typical sequence of photos taken when the channel is

uncovered. The channel runs from the center to the bottom of the photos.

Note the distoftion of the cross-channel line marker in a pattern suggesting

enhanced radial flow over the channel. Several potential difficulties are

also evident -- the distortion of the marker lines used in measuring ; from
straight lines and a slow drift of the center of the pattern from the center
of the tank. The slow drift may be due to imperfect leveling of the bottom

disk, as it is also apparent rhen the channel is not present. The distortion
of the lines indicated that aifferent parts of the fluid are spinning-up at

different rates. Both imperfections are hopefully minimized by taking the

average of four values of + to obtain

Although numerous runs were made with a range in A1 of about I to 4s- I ,

only two runs with -/L relatively large were subjected to careful quantitative
scrutiny. The rudimentary theoretical model predicts that the channel-induced

reduction in spin-up time should, other parameters being fixed, be more signif-

icant (and thus measureable) at large-/L . Runs both with and without a chan-

nel were made at - f = 4.4 6s-1,AA& = 0.12s-1 and -A 3.16s-1, A-= 0.09s-1

and determined as a function of time. In both cases C was about 0.03,
at the limits of applicability of the linear theory. Equation (39)

shows that a plot of ; vs. e " kshould be linear, with y-intercept TA/I.
In order to determine T it is thus imperative to know 4.A with some degree of

accuracy. Unfortunately, the available equipment allowed a relative error in
the measurement of A/L. on the order of 10%. A way was found to bypass this
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difficulty, however. A plot was made of 4 vs. C , where T&K is the
theoretical spin-up time with no channel on the bottom. As e-'fr'  approaches
1 the slope of the curve should aproach -T1r,&SL . Since T., is known,
measuring the slope near the right-hand side of the plot gives an improved
value of A S1•

In Figure 5 the filled circles are the data points in the case with the

channel, the open circles are the data points without the channel (scaled to
match the slight difference in A&S between the two cases) and the straight
line is the theoretical curve for ordinary Ekman spin-up without a channel for
the two runs. We see a significant drop-off of T from that of the ordinary
spin-up problem for large t , indicating a faster spin-up time. Using

43L T we find:
T= ISJ S 0 .71

Run #1 -T "7

Run #2 AL I. IS-  T S2. T .

Ta .

In Figure 6 ' is plotted against et/r for the two runs yielding a
reasonably good straight line. As predicted the relative effect of the
channel is more pronounced at higher S)L . Since -L (33) predicts

that ' .L. _t should be proportional to 2 :
r

(T~

The ratio on the left has a value of 0.62, while that on the right is 0.60 --

which is an acceptable agreement.

In order to compare the quantitative agreement between the theoretical
value of T from (33) and the experimentally measured one we need a value for
the permeability k of the channel. For a Hele-Shaw cell the permeability is
given by

(41)

where S is the width of the cell. If we use this for the channel we are
still faced with a choice for the value of s since it varies ideally as a
linear function of r and in practice as a function of the machinist's
capability on the bandsaw. If for s we use the width of the channel at the
sidewall we find k 0 O.021cm 2 while, if we use the mean width of the channel
(measured), k = 1.6xlO-3cm2 . Alternately, we can use the values of T found
experimentally to deduce the implied value of k, using N - kh/V (and 33).
If this is done Run #1 indicates a value of k - 2.8xi0- 3 cm2 , while Run #2
yields k = 2.9x10-3cm2 . This is in fair agreement with the value of k

obtained by using the mean width of the channel.

For Further Investigation

Two runs obviously do not make a very convincing case. More runs are

needed over a wider range of 11 , with 6* and h possibly also being varied.
The interesting developnent of the higher wave numbers in the flow field,

which was ignored in obtaining an estimate of T, merits further theoretical

I
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and experimental consideration, and perhaps the assistance of a computer. For
an experiment with a truly oceanographic application density stratification
must be introduced, with the internal radius of deformation larger than the
width of the channel (canyon?). We can go over to a steady state problem by
keeping constant but rotating the top plate relative to the bottom one,
mimicking the wind stress in the upwelling problem.
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A TALE OF NWO METHODS

P. H. Coullet and E. A. Spiegel

I. INTRODUCTION

This summer we have heard a lot about bifurcations in convection, be they
stationary, Hopf or multiple. There have been two kinds of method used for
these problems by various lecturers, namely, any of several asymptotic
procedures and the direct method of modal expansion and reduction to normal
form. To deal with multiple bifurcations in the asymptotic method based on
multitiming and amplitude expansion a mixing of orders was needed, as we saw.
That is, if you want a nondegenerate amplitude equation, you can expect to
have an E in it, whether you get this by reconstitution, as in the original
course, or insinuate it in by some iteration scheme as Howard and Knobloch did
in their lectures. You can also be conservative, accept the degenerate
amplitude equation, and use higher order information to select a solution as
Reiss et al. do at Northwestern. These asymptotic methods work alright, but
they do not seem to have the power of what we call the direct method to reveal
clearly what is really going on.

In the direct method, one reduces the problem to one of ordinary
differential equations at the outset by an expansion in normal modes. As
Guckenheimer described in his lectures, we can reduce the order by going onto K.
a center manifold. Then we can use coordinate transformations to simplify the
nonlinear terms and get the normal form. However, this direct route is, to
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our taste, too wedded to the modal expansion. If you are doing a convection
problem which is nonBoussinesq one has nonstandard boundary conditions, the
modes are not so simple and the expansions are unwieldy, as one of us has had
the misfortune to learn. Of course, when such messy things occur every scheme
is in some trouble, but the direct method encounters it at once and in a way
that is hard to deal with.

In short, there are things we like and things we do not like in bothI approaches and that is the tale we want to tell of these two methods. We have
looked for a happy ending and want to try this one out on you. We have
decided to take what we like and discard what we dislike from each approach
and make a hearty hybrid. Or if you prefer, the ending is that two methods
marry and produce a new scheme. We shall explain the new scheme by working
out the Hopf bifurcation for thermohaline convection.

I II. FORMULATION OF A TRACTABLE PROBLEK

Thermohaline convection in Boussinesq approximation in two dimensions is
governed by these equations:

(2.1)

9 
(2.2)

4(2.3)

Heret9and • are the deviations of the temperature and salinity from their
static values, Y- is the horizontal coordinate, Z is the vertical
coordinate, 7. is the Laplacian and

YT(Vj X) = a .a - V- ax (2.4)

The four parameters, R, S, Cr and V that appear in the equations are
respectively the Rayleigh number, the salt Rayleigh number, the Prandtl number
and the Lewis number; R is the usual 7 and S is Ri/-

let

di V2_ 0-.v (2.5)

1 and 0/

o o (2.6)

The governing equations may be written as

dt dY'tU ' 4/(,U ) (2.7)
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where

(2.8)

and

, ,/ (XaF,(E"d,. - xF)(E d7- (2.9)

with

" = C0o) 0 ) (2.10)

To these equations we associate some simple boundary conditions:

0j= o o i z =0 o1 % x ,ff/A (2.11) 1
0 f 0 0.Z - , (2.12)

dx (9-@ =  0 , = o XIr/C. (2.13)

III. STABILITY THEORY J
The linear equation is

and it has solutions

, t (3.2)lymn cosmax sin 4UZ

rmn cosmax sin 4 I
This kind of formula recurs frequently and we introduce a shorthand notation
to deal with it.

Let -- sinmax sl I,L
- cosmax sin n (3.3)

and cosmax sin ,,w Iand

, = ) (3.4) 1

Then we rewrite (3.2) as

U = ,,,, ,t (3.5)
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Note that the operation signified by * is commutative, associated and distribu-
tive.

The linear problem for various modes may then be written as

I Uo.L = I5 (3.6)

I where no summation convection is used herein, and

M W_(2 t - 0 (3.7)

%I2..0

[/_ ( ., 0 0) (3.8)

with

(3.9)

In other words, we have the block diagonal representation

The condition that (3.1) have a solution is r/ det(- ) 0. (3.10)

and we are led to

Q0 0

LuINS'*jj (3.11)

where

1h (3.12)
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If (3.11) is satisfied, it must be true that
1'~4 " -' + [%' 4 -T , ,, + -r +" 9-J 7

a ,--- Q. , = (3.13)

I
where whe req2 .q2. (3.14) I

Of course, other roots of (3.11) may exist besides those in (3.13), but we now
restrict our attention to values of R and S and a such that (3.11) is
fulfilled only for m - 1, n - 1, and for one value of a.

When, for real co , we have 1
= i,0 (3.15)

we have marginal stability. Then (3.13) gives the well known results of I
Veronis:

(3.16)

al R. - )(..z i~i (3.17) J

961a /(3.18) I
Condition (3.16) tells us when overstability starts, provided that G)>o.

We want to study the amplitude equation for the time periodic solution that I
bifurcates at that point, with ;L*o • When (3.16) is satisfied (3.13)
becomes

-Q 74 0 (3.19)

If we move slightly of condition (3.1) and divide (3.13) by Eyw.j(srP,4zt)J we

get, on assuming that e/g- r - , the quadratic

7 t 2- 11 # (' L 0 (3.20a)

where [ 3

, o,) . -- 41)(.+),w) (3.20b) -,

31

] Ki
J_
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We see that 2. is very nearly the growth rate of the near-marginal modes.
The definitions (3.17) and (3.18) continue to hold, hence 7 =  ± '*'
approximates the solutions of (3.20).

So much for elgenvalues. The eigenvectors of the marginal modes satisfy

I
whe re

. - .A ~ ) z = /,, (3.22)

We find

0 (3.23)

rt + ,

Iwhere the normalization constant is taken so as to make the first component
unity.

It is also useful in getting amplitude equations to find the solution of
the adjoint equation

M ,f to =(3.24)

where the adjoints of the matrix representations of the operators are simply
the transposed matrices. We find readily that

(3.25)

-. 'V+i - 4,1/

Thus

-or-aS! (1.26)

[I
_ _ _ _ _ _
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IV. THE AMPLITUDE EQUATION

We come now to the moral of this tale - a method for determining the
amplitude equation. We have seen that the eigenvector of linear theory is
complex, so we anticipate that the amplitude, call it Z (4 , will also be I
complex. We also expect that 2 will satisfy an ordinary differential
equation. We assume that this equation will, for small amplitude, give us
back the original linear theory. Therefore we suppose that

2 ( io..2 ) Z 4- 3(7 1 (4.1)

where we have to determine the nonlinear function 5 . ( Z is the complex
conjugate of Z and it satisfies (4.1).)

The basic idea is that all the time dependence of 4. is given by Z
and - , at least near the Hopf bifurcation. Therefore, we make the Ansatz

tCtVx) V z X) (4.2)

Our task is to determine V and 3 jointly. As we shall see, since Z has
replaced the time, we shall get derivatives with respect to 2 that are the
analogs of slow-time derivatives in asymptotic theory. This comes about
because of (4.2) which is reminiscent of the Bogoliuhov and Mitropoloky
approach to nonlinear oscillations. Howard, in his lecture, suggested how
asymptotics might go if we used similar kinds of gambits to derive p.d.e.'s. [

Here we do no asymptotics and immediately start acting like normal
formalists. We introduce Taylor series. We let I

00

k--= (4.3a)

/C ;# k Z (4.3b) j

And we proceed similarly for 8. However, for purposes of presentation we
shall simplify matters in two ways. First we shall compute 3 at marginal
stability and ignore the small correction to it that arises when we move
slightly off the marginal conditions. Second we shall admit that we know the I
normal form for a Hopf bifurcation and do not need to recompute it here. Then
at marginal stability (4.1) is rewritten as

Z = 10Z r /z/'z (4.4)

and the calculation of 0 is going to provide an illustration of our method.

91

-r $a _
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I We put (4.2) and (4.4) into (2.7):

(4.5)

I
Now we use (4.3a) and we obtain at once

Mlir = 0 46Iaz(46
But from (4.3h; we see that

V; -Jv, Z (4.7)

and we get

/ T/ 0  = i (4.8a)

II - V °/ -_ i ,1 ( 4 .8 b < )

Then

/a (4.9a)

1 and

I °'1  - (4.9b)

whe re

I - _ - (4.10)

If we want to change the normalization of 9 , that factor will show up in
There are several such "gauge" choices in this kind of calculation, but we
shall not discuss them; it seems preferable to keep things simple in
describing the essential parts of the method. This being said, we are done

* with the first degree.

Next, we look at

* (4. 11)I

I,,

..... . , . ..-. ,',, . '== --4 . : .,, ,
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We find

, V y r 'z V' V.0

+ z [vv °  ' V ) (4.12)

With the substitution

V + V" ~Z 4- VIL(413
we get

j 01) (4.14a)

- " v= - /V /( V , V II) (- (41Vbo )
(4.14b)

-, - ) °"  = /"/(v', v ,') (4 .14)

I
There are no resonances in (4.14) and they can be solved. We defer such
details to the next section and turn to the third degree. i

For - we get

3 V

0 (4.15) !

where 1
w (A h = . (A, 8) + .I( 8 .A) (4.16)

Now when we expand this out we observe that it can be written in the form

1VC v., ;) = Z JVf ZZ (4.17)

Moreover, we have II '
so . Vz /Y&/z 4- V

y 03 (4.18) J
Equation (4.15) gives us equation for the -:

" (4.19a)
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(4.19b)
| (i,, ,.V~ =-_ / - a , VI

'32 A -L 0,(4.19c)

./3 / (4.19d)

Now it happens that there are no resonances in (4.19a) and (4.19d) and they

may be solved. Of course, we knew this when we introduced such a simple form

of 3 into (4.1). Had we not allowed this knowledge to be sportsmanlike, we
would have introduced instead a full Taylor series like (4.3) for !as well.

Then (4.19a) and (4.19d) would have contained terms from 5 . We would have

determined them as we now shall calculate o . But those particular terms

in 3 do vanish and we have decided not to include them in this presentation.

It is a feature of this approach that if you know the normal form, you save

some effort, but if you do not happen to know it, you will find it out, along

with the center manifold, automatically.

The point now is that we need to determine Q( so that (4.19b) and (4.19c)
are soluble. They are just inhomogeneous versions of (4.8a) and (4.8b). The

adjoint to (4.8a) is

(4.20)

But -WTis orthogonal to the first member of (4.19b), with respect to the
usual scalar product in Hilbert space. Our problem of solvability is resolved
by the simple condition

< ,0 . *r >  (4.21)

Then (4.19c) is also dealt with; one need only observe that

/VAl (4.22)

and we find that if 1/'solves (4.19b), so, too, does

satisfy (4.19c).

This determines the solution in principle up to second degree. The
practice remains to be discussed and we kept it somewhat separate since there
are various ways to deal with it. Let us perform one now.

I
I.,
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V. DETAILS OF THE CALCULATION

The evaluation of the nonlinear terms that arose in i iV was bypassed
there. In fact, those evaluations arise one way or another in any method we
have used to get amplitude equations. We begin with a useful formula for all
those evaluations.
Let

I

(5.1)

T)HO) -ol
Then

pot.,~N,,, /a/it"(.a

whe re

"f '+ )of-me( m 
(5.2b)

Now we return to IV and we see that up to (4.12) everything is known
explicitly. Ue begin there with our renewed effort and we use (5.2). After
observing that -"n = 0, we get

A,.-.. . . . ... ... IO' 1 - (5 .3b) IIII~
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IThen we seek solutions of (4.1a) like

V V 2  z (5.4)

and, on doing this, we replace (4.14) by

S ) 2 0  ra (5.5a)
I A, ,tsL 1  4'f

(5.5b)

A

- ,o ) VT T (5.5c)

I /oz is defined in (3.7) and it is diagonal. We have

247 0 .
0 

-- /0)

0

I 4[ o o
-(8-C4 4o1aI

I0 00iJv

I and

I .,,.r ,t ,. c, / .

I a L i'A 6 4
We findI I 5L/2,rO- - -'," "

a.1r. ,' t) Zf-,r - ,g.,,) (5. 6a)

I
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A - a .V f-- i&)

4 4-w& (4f'o-'-+ ~
a. (.-ioCZT"- 4
S, ,(5.6b)

-0 4 4 -W) ( 4+-
OL c %,- i.,)(ZTF'; - i ,.)/

^ (et',

-[O ox10T (5.6c)

The n
A ,A

"V2 ( 2 - (5.7)
. V 0 +-2 V 02

This implicitly is the center manifold to second degree, but it is in trans-
formed coordintes compared to the standard expression.

Now we are poised to evaluate iX . Equation (4.21) indicates that we need
to know that

IV z (5. / V)

Since the first component of

~,,y~/'O,,' -_/~ 2) v70)

r:,,-*-p,.,

and

(*' i. s ftr- - .)

(5.10)

- .-.
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I Then

0

I - 4B (eta4 ) 4 4 ',- ,..-)

as + to) (4 T4 + ~tt
4 4, tZ.14 ) * r5.1)

Now to apply (4.21) we need W . e see from (4.20) that Ur'Zcan only

have modal components that are marginally stable, hence it must have the -A]

structure of --- • So the part of 1 ,ft that counts, namely the -, compc'-nt,
is proportional to Of . Since the constant does not matter, we take -W %.

We then get r

1 </3o0> 16 ~ t(k~S)z~(S3

i67 _"GC40
'

__ __- (zr__s_ ' '.12)

i and

o V / , 'r> -C(-_ ._ _ ._(___)z_

1L ,

The ratio of the integrals given in (5.12) and (5.13) gives o( That rat o,

as Far as we can tell, has no socially redeeming features and so we feel L'

proper not to show it explicitly in public.

I VI. CONCLUSION

Is this a far, far better thing that we have done or will one or anothor

asymptotic method do as well? The asymptotic methods give the same answers

superficially, but the answers have different meanings. If you take the

reconstituted thermohaline results in the original course and restore the

original variables you perceive, with a bit of calculating, that the neglec:ed

terms are of order unity in asymptotic terms. If you do not restore the

original variables you have mixed orders in the same equation. None of th

I need trouble one, but we do not need to face those questions either. Here
the convergence (or lack of it) is not asymptotic but in the sense of powe.

series. That is why the neglected terms look of order one in the asytmptoti

version: They are of order one asymptotically, but they are higher order
terms in the present method nontheless. Just how negligible they really ar
needs to be discussed. But discusion is for sissies; the hero wants to

compute.
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A significant question is this: Which is the best way to compute ampli-
tude equations? The answer depends on the taste and experience of the com-
puter, and the fact is that our experience is limited. It appears that the
differences among methods in the practical sense depend on the co-dimension.
Our Impression is that as the co-dimension goes up, the computational dif-
ficulty in the present scheme goes up less quickly than for, say, the method
of reconstitution. They cross perhaps at co-dimension 2 1/2 or so. But
either way you compute, it is going to be necessary to automate these pro-
cedures.

Perhaps the most telling question is which scheme should you choose if
your problem has a quadrivial linear problem? In that case, we think the way I
just outlined has some advantages. As we have seen, much of the formal

manipulation can be done independently of the details and formulas for the
explicit results could be given for a general form of the problem. Thus, even
if the linear problem has to be solved numerically, we believe that the
present scheme should be efficacious. An example that we find interesting is
stellar pulsation theory.

The final question that we may raise is that of extensions. The immediate
problem that comes to mind is the case where the amplitude equation is an
evalution equation as in wave theory, that is, a p.d.e. Here the asymptotic
method works, but we have not yet agreed on the generalization of the present
method. This is not surprising. The use of normal formalism gives normal
forms; if we could do that for p.d.e.'s we would be found to have something
rather complex on our hands. Even the degenerate cases, integrable systems, I
are not yet classifiable.

A more manageable extension is the replacement of Taylor series by
rational approximations. This has served well in other contexts, but it is
not an easy extension and we shall not be through with it soon.

In conclusion, the junior author thanks the senior author for allowing his
name to appear on this "fellow's report"; both fellows thank their fellow
participants for interest and encouragement; and the participants thank the
N.S.F. for support of some individual research (in this case through Columbia i
University) as well as of the collective GFD program.
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